in

Acclimation temperature affects thermal reaction norms for energy reserves in Drosophila

  • 1.

    Cossins, A. R. & Bowler, K. Temperature Biology of Animals (Chapman and Hall, London, 1987).

    Google Scholar 

  • 2.

    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Oxford University Press, Oxford, 2002).

    Google Scholar 

  • 3.

    Wilmer, P., Stone, G. & Johnston, I. Environmental Physiology of Animals (Blackwell Publishing, Oxford, 2005).

    Google Scholar 

  • 4.

    Huey, R. B., Berrigan, D., Gilchrist, G. W. & Herron, J. C. Testing the adaptive significance of acclimation: a strong inference approach. Am. Zool. 39, 323–336 (1999).

    Article  Google Scholar 

  • 5.

    IUPS Thermal Commission. Glossary of terms for thermal physiology. Third edition. J. Therm. Biol. 28, 75–106 (2003).

    Article  Google Scholar 

  • 6.

    Hazel, J. R. Influence of thermal acclimation on membrane lipid composition of rainbow trout liver. Am. J. Physiol. 236, R91-101 (1979).

    CAS  PubMed  Google Scholar 

  • 7.

    Overgaard, J. et al. Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster. J. Insect Physiol. 54, 619 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Moon, T. W. & Hochachka, P. W. Temperature and enzyme activity in poikilotherms. Biochem. J. 123, 695–705 (1971).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Storey, K. B. & Storey, J. M. Biochemical strategies of overwintering in the gall gly larva, Eurosta solidaginis: effect of low temperature acclimation on the activities of enzymes of intermediary metabolism. J. Comp. Physiol. 144, 191–199 (1981).

    CAS  Article  Google Scholar 

  • 10.

    Tomanek, L. & Somero, G. N. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine snails (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J. Exp. Biol. 202, 2925–2936 (1999).

    CAS  PubMed  Google Scholar 

  • 11.

    Colinet, H., Overgaard, J., Com, E. & Sørensen, J. G. Proteomic profiling of thermal acclimation in Drosophila melanogaster. Insect Biochem. Mol. Biol. 43, 352–365 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Lagerspetz, K. Y. H. & Vainio, L. A. Thermal behaviour of crustaceans. Biol. Rev. 81, 237–258 (2006).

    PubMed  Article  Google Scholar 

  • 13.

    Bowler, K. Acclimation, heat shock and hardening. J. Therm. Biol. 30, 125–130 (2005).

    Article  Google Scholar 

  • 14.

    Loeschcke, V. & Sørensen, J. G. Acclimation, heat shock and hardening—a response from evolutionary biology. J. Therm. Biol. 30, 255–257 (2005).

    Article  Google Scholar 

  • 15.

    Collier, R. J., Baumgard, L. H., Zimbelman, R. B. & Xiao, Y. Heat stress: physiology of acclimation and adaptation. Anim. Front. 9, 12–19 (2019).

    PubMed  Article  Google Scholar 

  • 16.

    Collier, R. J. et al. Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. J. Anim. Sci. 84, E1-13 (2006).

    PubMed  Article  Google Scholar 

  • 17.

    Kristensen, T. N., Kjeldal, H., Schou, M. F. & Nielsen, J. L. Proteomic data reveal a physiological basis for costs and benefits associated with thermal acclimation. J. Exp. Biol. 219, 969–976 (2016).

    PubMed  Article  Google Scholar 

  • 18.

    MacMillan, H. A. et al. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci. Rep. 6, 28999 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article  Google Scholar 

  • 20.

    Yao, C. L. & Somero, G. N. The impact of acute temperature stress on hemocytes of invasive and native mussels (Mytilus galloprovincialis and Mytilus californianus): DNA damage, membrane integrity, apoptosis and signaling pathways. J. Exp. Biol. 215, 4267–4277 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).

    Article  Google Scholar 

  • 22.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Article  Google Scholar 

  • 24.

    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).

    PubMed  Article  Google Scholar 

  • 25.

    Deere, J. A. & Chown, S. L. Testing the beneficial acclimation hypothesis and its alternatives for locomotor performance. Am. Nat. 168, 630–644 (2006).

    PubMed  Article  Google Scholar 

  • 26.

    Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).

    Article  Google Scholar 

  • 28.

    Lachenicht, M. W., Clusella-Trullas, S., Boardman, L., Le Roux, C. & Terblanche, J. S. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J. Insect Physiol. 56, 822–830 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).

    Article  Google Scholar 

  • 30.

    Kellermann, V., van Heerwaarden, B. & Sgrò, C. M. How important is thermal history? Evidence for lasting effects of developmental temperature on upper thermal limits in Drosophila melanogaster. Proc. Biol. Sci. 31, 20170447 (2017).

    Google Scholar 

  • 31.

    Schou, M. F. et al. Metabolic and functional characterization of effects of developmental temperature in Drosophila melanogaster. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R211–R222 (2017).

    PubMed  Article  Google Scholar 

  • 32.

    Klepsatel, P., Girish, T. N., Dircksen, H. & Gáliková, M. Reproductive fitness of Drosophila is maximised by optimal developmental temperature. J. Exp. Biol. 222, jeb202184 (2019).

    PubMed  Article  Google Scholar 

  • 33.

    Frazier, M. R., Harrison, J. F., Kirkton, S. D. & Roberts, S. P. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology. J. Exp. Biol. 211, 2116–2122 (2008).

    PubMed  Article  Google Scholar 

  • 34.

    Kristensen, T. N. et al. Costs and benefits of cold acclimation in field-released Drosophila. Proc. Natl. Acad. Sci. USA 105, 216–221 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 35.

    Zamudio, K. R., Huey, R. B. & Crill, W. D. Bigger isn’t always better: body size, developmental and parental temperature and male territorial success in Drosophila melanogaster. Anim. Behav. 49, 671–677 (1995).

    Article  Google Scholar 

  • 36.

    Zwaan, B. J., Bijlsma, R. & Hoekstra, R. F. On the developmental theory of ageing. II. The effect of developmental temperature on longevity in relation to adult body size in D. melanogaster. Heredity 68, 123–130 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Gibert, P., Huey, R. B. & Gilchrist, G. W. Locomotor performance of Drosophila melanogaster: interactions among developmental and adult temperatures, age, and geography. Evolution 55, 205–209 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: what we have learned from Drosophila. J. Evol. Biol. 20, 1655–1664 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).

    PubMed  Article  Google Scholar 

  • 40.

    Klepsatel, P., Gáliková, M., Xu, Y. & Kühnlein, R. P. Thermal stress depletes energy reserves in Drosophila. Sci. Rep. 6, 33667 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Klepsatel, P., Wildridge, D. & Gáliková, M. Temperature induces changes in Drosophila energy stores. Sci. Rep. 9, 5239 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    Leroi, A. M., Bennett, A. F. & Lenski, R. E. Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc. Natl. Acad. Sci. USA 91, 1917–1921 (1994).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    Beller, M., Thiel, K., Thul, P. J. & Jäckle, H. Lipid droplets: a dynamic organelle moves into focus. FEBS Lett. 584, 2176–2182 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–255 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Giesy, J. P. & Graney, R. L. Recent developments in and intercomparisons of acute and chronic bioassays and bioindicators. Hydrobiologia 188(189), 21–60 (1989).

    Article  Google Scholar 

  • 47.

    Smolders, R., Bervoets, L., De Coen, W. & Blust, R. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization. Environ. Pollut. 129, 99–112 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 48.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 49.

    Schuler, M. S., Cooper, B. S., Storm, J. J., Sears, M. W. & Angilletta, M. J. Isopods failed to acclimate their thermal sensitivity of locomotor performance during predictable or stochastic cooling. PLoS ONE 6, e20905 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Ferguson, L. V., Heinrichs, D. E. & Sinclair, B. J. Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia 181, 77–85 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 51.

    MacLean, H. J. et al. Evolution and plasticity of thermal performance: an analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180548 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Johnson, T. & Bennett, A. The thermal acclimation of burst escape performance in fish: an integrated study of molecular and cellular physiology and organismal performance. J. Exp. Biol. 198, 2165–2175 (1995).

    CAS  PubMed  Google Scholar 

  • 53.

    Seebacher, F., Ducret, V., Little, A. G. & Adriaenssens, B. Generalist-specialist trade-off during thermal acclimation. R. Soc. Open. Sci. 2, 140251 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    da Silva, C. R. B., Riginos, C. & Wilson, R. S. An intertidal fish shows thermal acclimation despite living in a rapidly fluctuating environment. J. Comp. Physiol. B 189, 385–398 (2019).

    PubMed  Article  Google Scholar 

  • 55.

    Kingsolver, J. G. & Huey, R. B. Selection and evolution of morphological and physiological plasticity in thermally varying environments. Am. Zool. 38, 545–560 (1998).

    Article  Google Scholar 

  • 56.

    Woods, H. A. & Harrison, J. F. The beneficial acclimation hypothesis versus acclimation of specific traits: physiological change in water-stressed Manduca sexta caterpillars. Physiol. Biochem. Zool. 74, 32–44 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Gabriel, W. & Lynch, M. The selective advantage of reaction norms for environmental tolerance. J. Evol. Biol. 5, 41–59 (1992).

    Article  Google Scholar 

  • 58.

    Cooper, B. S., Czarnoleski, M. & Angilletta, M. J. Acclimation of thermal physiology in natural populations of Drosophila melanogaster: a test of an optimality model. J. Evol. Biol. 23, 2346–2355 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 59.

    Nilsson-Örtman, V. & Johansson, F. The rate of seasonal changes in temperature alters acclimation of performance under climate change. Am. Nat. 190, 743–761 (2017).

    PubMed  Article  Google Scholar 

  • 60.

    Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).

    PubMed  Article  Google Scholar 

  • 61.

    Angilletta, M. J., Condon, C. & Youngblood, J. P. Thermal acclimation of flies from three populations of Drosophila melanogaster fails to support the seasonality hypothesis. J. Therm. Biol. 81, 25–32 (2019).

    PubMed  Article  Google Scholar 

  • 62.

    Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).

    PubMed  Article  Google Scholar 

  • 63.

    Bubliy, O. A., Riihimaa, A., Norry, F. M. & Loeschcke, V. Variation in resistance and acclimation to low-temperature stress among three geographical strains of Drosophila melanogaster. J. Therm. Biol. 27, 337–344 (2002).

    Article  Google Scholar 

  • 64.

    Chown, S. L. Physiological variation in insects: hierarchical levels and implications. J. Insect Physiol. 47, 649–660 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Terblanche, J. S., Sinclair, B. J., Klok, C. J., McFarlane, M. L. & Chown, S. L. The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). J. Insect Physiol. 51, 1013–1023 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 66.

    Woods, H. A. & Harrison, J. F. Interpreting rejections of the beneficial acclimation hypothesis: when is physiological plasticity adaptive?. Evolution 56, 1863–1866 (2002).

    PubMed  Article  Google Scholar 

  • 67.

    Somero, G. N. Comparative physiology: a ‘crystal ball’ for predicting consequences of global change. Am. J. Physiol. Regul. I(301), R1–R14 (2011).

    ADS  Google Scholar 

  • 68.

    Abele, D., Heise, K., Pörtner, H. O. & Puntarulo, S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 205, 1831–1841 (2002).

    CAS  PubMed  Google Scholar 

  • 69.

    Martinez, E., Menze, M. A. & Agosta, S. J. Reduced mitochondrial efficiency explains mismatched growth and metabolic rate at supraoptimal temperatures. Physiol. Biochem. Zool. 90, 294–298 (2017).

    PubMed  Article  Google Scholar 

  • 70.

    Kukal, O. & Dawson, T. E. Temperature and food quality influences feeding behavior, assimilation efficiency and growth rate of arctic woolly-bear caterpillars. Oecologia 79, 526–532 (1989).

    ADS  PubMed  Article  Google Scholar 

  • 71.

    Butterworth, F. M. Adipose tissue of Drosophila melanogaster. V. Genetic and experimental studies of an extrinsic influence on the rate of cell death in the larval fat body. Dev. Biol. 28, 311–325 (1972).

    CAS  PubMed  Article  Google Scholar 

  • 72.

    Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 210, 956–963 (2007).

    PubMed  Article  Google Scholar 

  • 73.

    Gáliková, M., Klepsatel, P., Xu, Y. & Kuhnlein, R. P. The obesity-related Adipokinetic hormone controls feeding and expression of neuropeptide regulators of Drosophila metabolism. Eur. J. Lipid Sci. Technol. 119, 1600138 (2017).

    Article  CAS  Google Scholar 

  • 74.

    Gáliková, M., Klepsatel, P., Münch, J. & Kühnlein, R. P. Spastic paraplegia-linked phospholipase PAPLA1 is necessary for development, reproduction, and energy metabolism in Drosophila. Sci Rep. 7, 46516 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 75.

    Tennessen, J. M., Barry, W. E., Cox, J. & Thummel, C. S. Methods for studying metabolism in Drosophila. Methods 68, 105–115 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Gáliková, M. et al. Energy homeostasis control in Drosophila Adipokinetic hormone mutants. Genetics 201, 665–683 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Waner, S. & Constenoble, S. Finite Mathematics and Applied Calculus 7th edn. (Cengage Learning, Boston, MA, 2017).

    Google Scholar 

  • 78.

    Bruce, P. S. Introductory Statistics and Analytics: A Resampling Perspective (Wiley, Hoboken, 2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences