in

Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts

  • 1.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 2.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    • CAS
    • Google Scholar
  • 3.

    Sorte, C. J. B., Williams, S. L. & Carlton, J. T. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19, 303–316 (2010).

    • Google Scholar
  • 4.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    • CAS
    • Google Scholar
  • 5.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    • Google Scholar
  • 6.

    Lipton, D. et al. in Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II (eds Reidmiller, D. R. et al.) Ch. 7 (U. S. Global Change Research Program, 2018).

  • 7.

    Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    • CAS
    • Google Scholar
  • 8.

    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    • CAS
    • Google Scholar
  • 9.

    Hodgson, J. A., Thomas, C. D., Wintle, B. A. & Moilanen, A. Climate change, connectivity and conservation decision making: back to basics. J. Appl. Ecol. 46, 964–969 (2009).

    • Google Scholar
  • 10.

    Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824 (2017).

    • Google Scholar
  • 11.

    McLachlan, J. S., Hellmann, J. J. & Schwartz, M. W. Framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).

    • Google Scholar
  • 12.

    Bonebrake, T. C. et al. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science. Biol. Rev. 93, 284–305 (2018).

    • Google Scholar
  • 13.

    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

    • Google Scholar
  • 14.

    Post, E. Ecology of Climate Change (Princeton Univ. Press, 2013).

  • 15.

    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    • Google Scholar
  • 16.

    Wallingford, P. D. & Sorte, C. J. B. Community regulation models as a framework for direct and indirect effects of climate change on species distributions. Ecosphere 10, e02790 (2019).

    • Google Scholar
  • 17.

    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).

    • CAS
    • Google Scholar
  • 18.

    Williamson, M. & Fitter, A. The varying success of invaders. Ecology 77, 1661–1666 (1996).

    • Google Scholar
  • 19.

    Jeschke, J. M. & Strayer, D. L. Invasion success of vertebrates in Europe and North America. Proc. Natl Acad. Sci. USA 102, 7198–7202 (2005).

    • CAS
    • Google Scholar
  • 20.

    Simberloff, D., Souza, L., Nuñez, M. A., Barrios-Garcia, M. N. & Bunn, W. The natives are restless, but not often and mostly when disturbed. Ecology 93, 598–607 (2012).

    • Google Scholar
  • 21.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).

    • Google Scholar
  • 22.

    Pyšek, P. & Richardson, D. M. in Biological Invasions (Ed. Nentwig, W.) 97–125 (Springer, 2008).

  • 23.

    Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).

  • 24.

    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).

    • Google Scholar
  • 25.

    Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).

    • Google Scholar
  • 26.

    Coutts, S. R., Helmstedt, K. J. & Bennett, J. R. Invasion lags: the stories we tell ourselves and our inability to infer process from pattern. Divers. Distrib. 24, 244–251 (2018).

    • Google Scholar
  • 27.

    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).

    • Google Scholar
  • 28.

    Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).

    • Google Scholar
  • 29.

    Szűcs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl Acad. Sci. USA 114, 13501–13506 (2017).

    • Google Scholar
  • 30.

    Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).

    • Google Scholar
  • 31.

    Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    • Google Scholar
  • 32.

    Battisti, A. et al. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15, 2084–2096 (2005).

    • Google Scholar
  • 33.

    Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).

    • CAS
    • Google Scholar
  • 34.

    Lesk, C., Coffel, E., D’Amato, A. W., Dodds, K. & Horton, R. Threats to North American forests from southern pine beetle with warming winters. Nat. Clim. Change 7, 713–717 (2017).

    • Google Scholar
  • 35.

    Dukes, J. S. et al. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can. J. For. Res. 39, 231–248 (2009).

    • Google Scholar
  • 36.

    Berg, E. E., David Henry, J., Fastie, C. L., De Volder, A. D. & Matsuoka, S. M. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manage. 227, 219–232 (2006).

    • Google Scholar
  • 37.

    Weed, A. S., Ayres, M. P. & Hicke, J. A. Consequences of climate change for biotic disturbances in North American forests. Ecol. Monogr. 83, 441–470 (2013).

    • Google Scholar
  • 38.

    Rice, S. K., Westerman, B. & Federici, R. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol. 174, 97–107 (2004).

    • Google Scholar
  • 39.

    McCarthy-Neumann, S. & Ibáñez, I. Tree range expansion may be enhanced by escape from negative plant-soil feedbacks. Ecology 93, 2637–2649 (2012).

    • Google Scholar
  • 40.

    Iverson, L. R., Prasad, A. M., Matthews, S. N. & Peters, M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manage. 254, 390–406 (2008).

    • Google Scholar
  • 41.

    Ramos JE, Pecl GT, Moltschaniwskyj NA, Strugnell JM, León RI, S. J. Body size, growth and life span: Implications for the polewards range shift of Octopus tetricus in south-eastern Australia. PLoS ONE 9, E103480 (2014).

  • 42.

    Hoving, H.-J. T. et al. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Chang. Biol. 19, 2089–2103 (2013).

    • Google Scholar
  • 43.

    Ramos, J. E. et al. Reproductive capacity of a marine species (Octopus tetricus) within a recent range extension area. Mar. Freshw. Res. 66, 999–1008 (2015).

    • Google Scholar
  • 44.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    • Google Scholar
  • 45.

    Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).

    • Google Scholar
  • 46.

    Ramos, J. E. et al. Population genetic signatures of a climate change driven marine range extension. Sci. Rep. 8, 9558 (2018).

    • Google Scholar
  • 47.

    Fridley, J. D. & Sax, D. F. The imbalance of nature: revisiting a Darwinian framework for invasion biology. Glob. Ecol. Biogeogr. 23, 1157–1166 (2014).

    • Google Scholar
  • 48.

    Cox, J. G. & Lima, S. L. Naivete and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).

    • Google Scholar
  • 49.

    HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R. & Theobald, E. J. How will biotic interactions influence climate change-induced range shifts? Ann. NY Acad. Sci. 1297, 112–125 (2013).

    • Google Scholar
  • 50.

    Engelkes, T. et al. Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456, 946–948 (2008).

    • CAS
    • Google Scholar
  • 51.

    Katz, D. S. W. & Ibáñez, I. Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies. Ecology 97, 2331–2341 (2016).

    • Google Scholar
  • 52.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).

    • CAS
    • Google Scholar
  • 53.

    King, D. A., Bachelet, D. M. & Symstad, A. J. Climate change and fire effects on a prairie-woodland ecotone: projecting species range shifts with a dynamic global vegetation model. Ecol. Evol. 3, 5076–5097 (2013).

    • Google Scholar
  • 54.

    Vergés, A. et al. Tropical rabbitfish and the deforestation of a warming temperate sea. J. Ecol. 102, 1518–1527 (2014).

    • Google Scholar
  • 55.

    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    • CAS
    • Google Scholar
  • 56.

    Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).

    • Google Scholar
  • 57.

    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).

    • Google Scholar
  • 58.

    Gurevitch, J. & Padilla, D. K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19, 470–474 (2004).

    • Google Scholar
  • 59.

    Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).

    • Google Scholar
  • 60.

    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    • Google Scholar
  • 61.

    Carey, M. P., Sanderson, B. L., Barnas, K. A. & Olden, J. D. Native invaders – challenges for science, management, policy, and society. Front. Ecol. Environ. 10, 373–381 (2012).

    • Google Scholar
  • 62.

    Wood, C. M., Witham, J. W. & Hunter, M. L. Climate-driven range shifts are stochastic processes at a local level: two flying squirrel species in Maine. Ecosphere 7, e01240 (2016).

    • Google Scholar
  • 63.

    Garroway, C. J. et al. Climate change induced hybridization in flying squirrels. Glob. Chang. Biol. 16, 113–121 (2010).

    • Google Scholar
  • 64.

    Krichbaum, K. & Mahan, C. G. Steele, M. a, Turner, G. & Hudson, P. J. The potential role of Strongyloides robustus on parasite-mediated competition between two species of flying squirrels (Glaucomys). J. Wildl. Dis. 46, 229–235 (2010).

    • Google Scholar
  • 65.

    Kennedy-Slaney, L., Bowman, J., Walpole, A. A. & Pond, B. A. Northward bound: the distribution of white-tailed deer in Ontario under a changing climate. J. Wildl. Res. 45, 220–228 (2018).

    • Google Scholar
  • 66.

    Weiskopf, S. R., Ledee, O. E. & Thompson, L. M. Climate change effects on deer and moose in the midwest. J. Wildl. Manage. 83, 769–781 (2019).

    • Google Scholar
  • 67.

    Tape, K. D., Gustine, D. D., Ruess, R. W., Adams, L. G. & Clark, J. A. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat. PLoS ONE 11, e0152636 (2016).

    • Google Scholar
  • 68.

    Richardson, D. M. Ecology and Biogeography of Pinus (Cambridge Univ. Press, 1998).

  • 69.

    Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J. & Haddon, M. Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Glob. Chang. Biol. 15, 719–731 (2009).

    • Google Scholar
  • 70.

    Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130269 (2015).

    • Google Scholar
  • 71.

    Strain, E. & Johnson, C. R. Competition between an invasive urchin and commercially fished abalone: effect on body condition, reproduction and survivorship. Mar. Ecol. Prog. Ser. 377, 169–182 (2009).

    • Google Scholar
  • 72.

    Bradley, B. A. et al. Disentangling the abundance-impact relationship for invasive species. Proc. Natl Acad. Sci. USA 116, 9919–9924 (2019).

    • CAS
    • Google Scholar
  • 73.

    Blackburn, T. M. et al. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014).

    • Google Scholar
  • 74.

    Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arctic Antarct. Alp. Res. 46, 829–840 (2014).

    • Google Scholar
  • 75.

    Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).

    • Google Scholar
  • 76.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    • CAS
    • Google Scholar
  • 77.

    Angelo, C. L. & Daehler, C. C. Upward expansion of fire-adapted grasses along a warming tropical elevation gradient. Ecography 36, 551–559 (2013).

    • Google Scholar
  • 78.

    Filbee-Dexter, K. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).

    • Google Scholar
  • 79.

    Demopoulos, A. & Smith, C. Invasive mangroves alter macrofaunal community structure and facilitate opportunistic exotics. Mar. Ecol. Prog. Ser. 404, 51–67 (2010).

    • CAS
    • Google Scholar
  • 80.

    Osland, M. J., Enwright, N., Day, R. H. & Doyle, T. W. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob. Chang. Biol. 19, 1482–1494 (2013).

    • Google Scholar
  • 81.

    Bolser, R. C. & Hay, M. E. Are tropical plants better defended? Palatability and defenses of temperate vs. tropical seaweeds. Ecology 77, 2269–2286 (1996).

    • Google Scholar
  • 82.

    Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008).

    • CAS
    • Google Scholar
  • 83.

    Borer, E. T. et al. Global biogeography of autotroph chemistry: is insolation a driving force? Oikos 122, 1121–1130 (2013).

    • CAS
    • Google Scholar
  • 84.

    Silliman, B. R. et al. Consumer fronts, global change, and runaway collapse in ecosystems. Annu. Rev. Ecol. Evol. Syst. 44, 503–538 (2013).

    • Google Scholar
  • 85.

    Campbell, A. H., Vergés, A. & Steinberg, P. D. Demographic consequences of disease in a habitat-forming seaweed and impacts on interactions between natural enemies. Ecology 95, 142–152 (2014).

    • Google Scholar
  • 86.

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).

    • Google Scholar
  • 87.

    Hawkins, C. L. et al. Framework and guidelines for implementing the proposed IUCN Environmental Impact Classification for Alien Taxa (EICAT). Divers. Distrib. 21, 1360–1363 (2015).

    • Google Scholar
  • 88.

    Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).

    • Google Scholar
  • 89.

    Stein, B. A. et al. Preparing for and managing change: climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 11, 502–510 (2013).

    • Google Scholar
  • 90.

    Kreyling, J. et al. Assisted colonization: a question of focal units and recipient localities. Restor. Ecol. 19, 433–440 (2011).

    • Google Scholar
  • 91.

    Filbee-Dexter, K. et al. Ecological surprise: concept, synthesis, and social dimensions. Ecosphere 8, e02005 (2017).

    • Google Scholar
  • 92.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    • Google Scholar
  • 93.

    Richardson, D. M. et al. Multidimensional evaluation of managed relocation. Proc. Natl Acad. Sci. USA 106, 9721–9724 (2009).

    • CAS
    • Google Scholar
  • 94.

    Vilà, M. et al. A review of impact assessment protocols of non-native plants. Biol. Invasions 21, 709–723 (2019).

    • Google Scholar
  • 95.

    Garibaldi, A. & Turner, N. Cultural keystone species: implications for ecological conservation and restoration. Ecol. Soc. 9, 1 (2004).

    • Google Scholar
  • 96.

    Enquist, C. A. F. et al. Foundations of translational ecology. Front. Ecol. Environ. 15, 541–550 (2017).

    • Google Scholar
  • 97.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    • CAS
    • Google Scholar
  • 98.

    Ibáñez, I., Silander, J. A. Jr, Allen, J. M., Treanor, S. A. & Wilson, A. Identifying hotspots for plant invasions and forecasting focal points of further spread. J. Appl. Ecol. 46, 1219–1228 (2009).

    • Google Scholar
  • 99.

    Allen, J. M. & Bradley, B. A. Out of the weeds? Reduced plant invasion risk with climate change in the continental United States. Biol. Conserv. 203, 306–312 (2016).

    • Google Scholar
  • 100.

    Pereyra, P. J. Rethinking the native range concept. Conserv. Biol. 34, 373–377 (2019).

    • Google Scholar
  • 101.

    Raymond, C. M. et al. Integrating local and scientific knowledge for environmental management. J. Environ. Manage. 91, 1766–1777 (2010).

    • Google Scholar
  • 102.

    Hutchins, L. W. The bases for temperature zonation in geographical distribution. Ecol. Monogr. 17, 325–335 (1947).

    • Google Scholar
  • 103.

    Araújo, M. B. & Pearson, R. G. Equilibrium of species’ distributions with climate. Ecography 28, 693–695 (2005).

    • Google Scholar
  • 104.

    Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    • CAS
    • Google Scholar
  • 105.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    • CAS
    • Google Scholar
  • 106.

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    • CAS
    • Google Scholar
  • 107.

    Wilmers, C. C. & Getz, W. M. Gray wolves as climate change buffers in Yellowstone. PLoS Biol. 3, e92 (2005).

    • Google Scholar
  • 108.

    Wilmers, C. C. & Post, E. Predicting the influence of wolf-provided carrion on scavenger community dynamics under climate change scenarios. Glob. Chang. Biol. 12, 403–409 (2006).

    • Google Scholar
  • 109.

    Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci 1, 117–141 (2009).

    • Google Scholar
  • 110.

    Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).

    • Google Scholar
  • 111.

    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).

    • Google Scholar
  • 112.

    Gallina, S. & Lopez Arevalo, H. Odocoileus virginianus (The IUCN Red List of Threatened Species, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T42394A22162580.en

  • 113.

    Hundertmark, K. Alces alces (The IUCN Red List of Threatened Species 2016, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T56003281A22157381.en

  • 114.

    Gunn, A. Rangifer tarandus (The IUCN Red List of Threatened Species 2016, accessed 7 March 2020); https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29742A22167140.en


  • Source: Ecology - nature.com

    The intensification of Arctic warming as a result of CO2 physiological forcing

    Accelerating invasion potential of disease vector Aedes aegypti under climate change