in

Agricultural productivity in relation to climate and cropland management in West Africa

  • 1.

    IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge, UK, 2014).

  • 2.

    Sultan, B. & Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Frontiers in Plant Science 7, 1262, https://doi.org/10.3389/fpls.2016.01262 (2016).

  • 3.

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187, https://doi.org/10.1038/nature12540 (2013).

  • 4.

    Sylla, M. B., Elguindi, N., Giorgi, F. & Wisser, D. Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Climatic Change 134, 241–253, https://doi.org/10.1007/s10584-015-1522-z (2016).

  • 5.

    Giannini, A., Biasutti, M., Held, I. M. & Sobel, A. H. A global perspective on African climate. Climatic Change 90, 359–383 (2008).

  • 6.

    Sonwa, D. J. et al. Drivers of climate risk in African agriculture. Climate and Development 9, 383–398, https://doi.org/10.1080/17565529.2016.1167659 (2017).

    • Article
    • Google Scholar
  • 7.

    ILO. Key Indicators of the Labour Market. (International Labour Organization, Geneva, 2014).

  • 8.

    Aboudou, F., Désir, T., Sanni, G. & Jenn-Treyer, O. Agriculture and Food in West Africa: Trends, Performances and Agricultural Policies. 138 (ECOWAS Commission, Abuja, 2015).

  • 9.

    Sissoko, K., van Keulen, H., Verhagen, J., Tekken, V. & Battaglini, A. Agriculture, livelihoods and climate change in the West African Sahel. Reg Environ Change 11, 119–125, https://doi.org/10.1007/s10113-010-0164-y (2011).

    • Article
    • Google Scholar
  • 10.

    Shimeles, A., Verdier-Chouchane, A. & Boly, A. In Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa (eds Abebe Shimeles, Audrey Verdier-Chouchane, & Amadou Boly) 1–12 (Springer International Publishing, 2018).

  • 11.

    Abdi, A. M. et al. The El Niño – La Niña cycle and recent trends in supply and demand of net primary productivity in African drylands. Climatic Change 138, 111–125, https://doi.org/10.1007/s10584-016-1730-1 (2016).

  • 12.

    Masih, I., Maskey, S., Mussá, F. E. F. & Trambauer, P. A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol. Earth System Science 18, 3635–3649, https://doi.org/10.5194/hess-18-3635-2014 (2014).

  • 13.

    Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7, 034032 (2012).

  • 14.

    Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Global Environmental Change 21, 1073–1083, https://doi.org/10.1016/j.gloenvcha.2011.04.007 (2011).

    • Article
    • Google Scholar
  • 15.

    Faye, B. et al. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna. Environmental Research Letters 13, 034014, https://doi.org/10.1088/1748-9326/aaab40 (2018).

  • 16.

    Sultan, B. et al. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environmental Research Letters 8, 014040 (2013).

  • 17.

    United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. (Department of Economic and Social Affairs/Population Division, New York, 2017).

  • 18.

    Abdi, A. M., Seaquist, J., Tenenbaum, D. E., Eklundh, L. & Ardö, J. The supply and demand of net primary production in the Sahel. Environmental Research Letters 9, 094003 (2014).

  • 19.

    Sallaba, F. et al. Future supply and demand of net primary production in the Sahel. Earth Syst. Dynam. 8, 1191–1221, https://doi.org/10.5194/esd-8-1191-2017 (2017).

  • 20.

    ECOWAS. 2025 Strategic Policy Framework. (ECOWAS Department of Agriculture, Environment and Water Resources, Abuja, Nigeria, 2017).

  • 21.

    Helman, D. Land surface phenology: What do we really ‘see’ from space? Science of the Total Environment 618, 665–673, https://doi.org/10.1016/j.scitotenv.2017.07.237 (2018).

  • 22.

    Guan, K. et al. Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. Journal of Geophysical Research: Biogeosciences 119, 1652–1669, https://doi.org/10.1002/2013JG002572 (2014).

  • 23.

    Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Global Change Biology 22, 1456–1468, https://doi.org/10.1111/gcb.13168 (2016).

  • 24.

    Adole, T., Dash, J. & Atkinson, P. M. Characterising the land surface phenology of Africa using 500 m MODIS EVI. Applied Geography 90, 187–199, https://doi.org/10.1016/j.apgeog.2017.12.006 (2018).

    • Article
    • Google Scholar
  • 25.

    Adole, T., Dash, J. & Atkinson, P. M. Major trends in the land surface phenology (LSP) of Africa, controlling for land-cover change. International Journal of Remote Sensing, 1–16, https://doi.org/10.1080/01431161.2018.1479797 (2018).

  • 26.

    Brandt, M. et al. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. Remote Sensing of Environment 183, 215–225, https://doi.org/10.1016/j.rse.2016.05.027 (2016).

  • 27.

    Heumann, B. W., Seaquist, J. W., Eklundh, L. & Jönsson, P. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment 108, 385–392, https://doi.org/10.1016/j.rse.2006.11.025 (2007).

  • 28.

    Hoscilo, A. et al. A conceptual model for assessing rainfall and vegetation trends in sub-Saharan Africa from satellite data. International Journal of Climatology 35, 3582–3592, https://doi.org/10.1002/joc.4231 (2015).

  • 29.

    Ibrahim, Y., Balzter, H., Kaduk, J. & Tucker, C. Land Degradation Assessment Using Residual Trend Analysis of GIMMS NDVI3g, Soil Moisture and Rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sensing 7, 5471 (2015).

  • 30.

    Vrieling, A., de Leeuw, J. & Said, M. Length of Growing Period over Africa: Variability and Trends from 30 Years of NDVI Time Series. Remote Sensing 5, 982–1000, https://doi.org/10.3390/rs5020982 (2013).

  • 31.

    Leroux, L., Bégué, A., Lo Seen, D., Jolivot, A. & Kayitakire, F. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sensing of Environment 191, 38–54, https://doi.org/10.1016/j.rse.2017.01.014 (2017).

  • 32.

    Hickler, T. et al. Precipitation controls Sahel greening trend. Geophysical Research Letters 32, https://doi.org/10.1029/2005gl024370 (2005).

  • 33.

    Abdi, A. M. et al. Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data. Remote Sensing 9, 294 (2017).

  • 34.

    Adole, T., Dash, J. & Atkinson, P. M. A systematic review of vegetation phenology in Africa. Ecological Informatics 34, 117–128, https://doi.org/10.1016/j.ecoinf.2016.05.004 (2016).

    • Article
    • Google Scholar
  • 35.

    Sohoulande Djebou, D. C., Singh, V. P. & Frauenfeld, O. W. Vegetation response to precipitation across the aridity gradient of the southwestern United states. Journal of Arid Environments 115, 35–43, https://doi.org/10.1016/j.jaridenv.2015.01.005 (2015).

  • 36.

    Ashmore, M. R. Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment 28, 949–964, https://doi.org/10.1111/j.1365-3040.2005.01341.x (2005).

  • 37.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nature Climate Change 6, 791–795, https://doi.org/10.1038/nclimate3004 (2016).

  • 38.

    Le, Q. B., Tamene, L. & Vlek, P. L. G. Multi-pronged assessment of land degradation in West Africa to assess the importance of atmospheric fertilization in masking the processes involved. Global and Planetary Change 92–93, 71–81, https://doi.org/10.1016/j.gloplacha.2012.05.003 (2012).

  • 39.

    Nyamekye, C., Thiel, M., Schönbrodt-Stitt, S., Zoungrana, B. & Amekudzi, L. Soil and Water Conservation in Burkina Faso, West Africa. Sustainability 10, 3182 (2018).

    • Article
    • Google Scholar
  • 40.

    Luan, Y. et al. Cropland yield divergence over Africa and its implication for mitigating food insecurity. Mitigation and Adaptation Strategies for Global Change, 1–28, https://doi.org/10.1007/s11027-018-9827-7 (2018).

    • Article
    • Google Scholar
  • 41.

    Ibrahim, Y. Z., Balzter, H. & Kaduk, J. Land degradation continues despite greening in the Nigeria-Niger border region. Global Ecology and Conservation 16, e00505, https://doi.org/10.1016/j.gecco.2018.e00505 (2018).

    • Article
    • Google Scholar
  • 42.

    Igbawua, T., Zhang, J., Chang, Q. & Yao, F. Vegetation dynamics in relation with climate over Nigeria from 1982 to 2011. Environmental Earth Sciences 75, 518, https://doi.org/10.1007/s12665-015-5106-z (2016).

    • Article
    • Google Scholar
  • 43.

    Salami, A. T. & Adepoju, K. A. In Technologies and Innovations for Development: Scientific Cooperation for a Sustainable Future (eds Jean-Claude Bolay, Magali Schmid, Gabriela Tejada, & Eileen Hazboun) 233–248 (Springer Paris, 2012).

  • 44.

    Usman, M. & Nichol, J. E. Remarkable increase in tree density and fuelwood production in the croplands of northern Nigeria. Land Use Policy 78, 410–419, https://doi.org/10.1016/j.landusepol.2018.04.046 (2018).

    • Article
    • Google Scholar
  • 45.

    Reij, C. & Winterbottom, R. Scaling up regreening: Six steps to success. A practical approach to forest and landscape restoration. (World Resources Institute, Washington, D.C., 2015).

  • 46.

    Mueller, T. et al. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity. Remote Sensing 6, 5717–5731, https://doi.org/10.3390/rs6065717 (2014).

  • 47.

    Boschetti, M. et al. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall. ISPRS Journal of Photogrammetry and Remote Sensing 78, 26–40, https://doi.org/10.1016/j.isprsjprs.2013.01.003 (2013).

  • 48.

    UnitedNations. World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421). (United Nations, Department of Economic and Social Affairs, Population Division, 2019).

  • 49.

    Abdou, A., Koala, S. & Bationo, A. In Lessons learned from Long-term Soil Fertility Management Experiments in Africa (eds Andre Bationo et al.) 105–120 (Springer Netherlands, 2012).

  • 50.

    Sawadogo, H. Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Agricultural Sustainability 9, 120–128, https://doi.org/10.3763/ijas.2010.0552 (2011).

    • Article
    • Google Scholar
  • 51.

    Félix, G. F. et al. Use and management of biodiversity by smallholder farmers in semi-arid West Africa. Global Food Security 18, 76–85, https://doi.org/10.1016/j.gfs.2018.08.005 (2018).

    • Article
    • Google Scholar
  • 52.

    Antwi-Agyei, P., Dougill, A. J., Agyekum, T. P. & Stringer, L. C. Alignment between nationally determined contributions and the sustainable development goals for West Africa. Climate Policy 18, 1296–1312, https://doi.org/10.1080/14693062.2018.1431199 (2018).

    • Article
    • Google Scholar
  • 53.

    MADR, M. d. l. a. e. d. d. r. La politique de relance agricole, http://www.agriculture.gouv.ci/accueil/pages/la-politique-de-relance-agricole (2016).

  • 54.

    MOA-Liberia. Comprehensive assessment of the agricultural sector. (Ministry of Agriculture, Liberia, 2007).

  • 55.

    FAO. Profil de Pays – Mali. (FAO, Rome, Italie, 2015).

  • 56.

    MOGCSP-Ghana. Livelihood Empowerment Against Poverty. (Ministry of Gender, Children and Social Protection, Ghana, 2019).

  • 57.

    MOFA-Ghana. Agricultural Sector Progress Report. (Ministry of Food and Agriculture, Ghana, 2017).

  • 58.

    Busby, J. W., Cook, K. H., Vizy, E. K., Smith, T. G. & Bekalo, M. Identifying hot spots of security vulnerability associated with climate change in Africa. Climatic Change 124, 717–731, https://doi.org/10.1007/s10584-014-1142-z) (2014).

  • 59.

    Nebie, E. K. & West, C. T. Migration and Land-Use and Land-Cover Change in Burkina Faso: a comparative case study. Journal of Political Ecology 26, 614–632 (2019).

    • Article
    • Google Scholar
  • 60.

    Adelaja, A. & George, J. Effects of conflict on agriculture: Evidence from the Boko Haram insurgency. World Development 117, 184–195, https://doi.org/10.1016/j.worlddev.2019.01.010 (2019).

    • Article
    • Google Scholar
  • 61.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment 1, 14–27, https://doi.org/10.1038/s43017-019-0001-x (2020).

  • 62.

    Elbehri, A., Kaminski, J., Koroma, S., Iafrate, M. & Benali, M. West Africa food systems: an overview of trends and indicators of demand, supply, and competitiveness of staple food value chains. 1–42 (Food and Agriculture Organization of the United Nations, Rome, Italy, 2013).

  • 63.

    HarvestChoice. Farming System (codes). (ed. International Food Policy Research Institute and University of Minnesota) (Washington, D. C. & St. Paul, M. N., 2015).

  • 64.

    HarvestChoice. Agro-ecological Zones of sub-Saharan Africa. (ed. International Food Policy Research Institute and University of Minnesota) (Washington, D. C. & St. Paul, M. N., 2010).

  • 65.

    Hogan, R. Radiation Quantities in the ECMWF model and MARS. (2015).

  • 66.

    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nature Ecology & Evolution 3, 772–779, https://doi.org/10.1038/s41559-019-0838-x (2019).

    • Article
    • Google Scholar
  • 67.

    Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 1811–1817, https://doi.org/10.1098/rstb.2007.0032 (2008).

  • 68.

    Abdi, A. M. et al. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. International Journal of Applied Earth Observation and Geoinformation 78, 249–260, https://doi.org/10.1016/j.jag.2019.01.018 (2019).

  • 69.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data 2, 150066, https://doi.org/10.1038/sdata.2015.66 (2015).

  • 70.

    Vermote, E. (ed NASA EOSDIS Land Processes DAAC) (2015).

  • 71.

    ESA, http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).

  • 72.

    Rouse, J. W., Hass, R. H., Schell, J. A. & Deering, D. W. In Third ERTS Symposium. 309–317 (NASA).

  • 73.

    Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6, 1335–1372, https://doi.org/10.1080/01431168508948283 (1985).

  • 74.

    Jönsson, P. & Eklundh, L. TIMESAT—a program for analyzing time-series of satellite sensor data. Computers & Geosciences 30, 833–845, https://doi.org/10.1016/j.cageo.2004.05.006 (2004).

  • 75.

    Cai, Z., Jönsson, P., Jin, H. & Eklundh, L. Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data. Remote Sensing 9, 1271, https://doi.org/10.3390/rs9121271 (2017).

  • 76.

    Mbow, C., Fensholt, R., Rasmussen, K. & Diop, D. Can vegetation productivity be derived from greenness in a semi-arid environment? Evidence from ground-based measurements. Journal of Arid Environments 97, 56–65, https://doi.org/10.1016/j.jaridenv.2013.05.011 (2013).

  • 77.

    Theil, H. A rank-invariant method of linear and polynomial regression analysis I, II and III. Nederl. Akad. Wetensch. Proc. 53, 386–392, 521–525, 1397–1412 (1950).

  • 78.

    Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934 (1968).

  • 79.

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822, https://doi.org/10.1007/s10584-012-0570-x (2013).

  • 80.

    Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles 10, 603–628, https://doi.org/10.1029/96gb02692 (1996).

  • 81.

    Kim, S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Communications for Statistical Applications and Methods 22, 665 (2015).

    • Article
    • Google Scholar
  • 82.

    Burnham, K. P. & Anderson, D. R. In Model Selection and Inference: A Practical Information-Theoretic Approach 32–74 (Springer New York, 1998).

  • 83.

    Wessels, K. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments 68, 271–297 (2007).

  • 84.

    Gichenje, H. & Godinho, S. Establishing a land degradation neutrality national baseline through trend analysis of GIMMS NDVI Time-series. Land Degradation &. Development 29, 2985–2997, https://doi.org/10.1002/ldr.3067 (2018).

    • Article
    • Google Scholar
  • 85.

    Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences 112, 2788–2793, https://doi.org/10.1073/pnas.1413090112 (2015).


  • Source: Ecology - nature.com

    A material’s insulating properties can be tuned at will

    Instrument may enable mail-in testing to detect heavy metals in water