in

Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro

  • 1.

    Derrien, M. et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254–268. https://doi.org/10.4161/gmic.1.4.12778 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • 2.

    Derrien, M. Akkermansia muciniphila gen. nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. https://doi.org/10.1099/ijs.0.02873-0 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 3.

    Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 65, 426–436. https://doi.org/10.1136/gutjnl-2014-308778 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 4.

    Karlsson, C. L. J. et al. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 20, 2257–2261. https://doi.org/10.1038/oby.2012.110 (2012).

    Article  PubMed  Google Scholar 

  • 5.

    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108. https://doi.org/10.1371/journal.pone.0071108 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Png, C. W. et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105, 2420–2428. https://doi.org/10.1038/ajg.2010.281 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Rajilić-Stojanović, M., Shanahan, F., Guarner, F. & De Vos, W. M. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm. Bowel Dis. 19, 481–488. https://doi.org/10.1097/MIB.0b013e31827fec6d (2013).

    Article  PubMed  Google Scholar 

  • 8.

    Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut 60, 34–40. https://doi.org/10.1136/gut.2009.191320 (2011).

    Article  PubMed  Google Scholar 

  • 9.

    Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648. https://doi.org/10.1128/AEM.01226-07 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Collado, M. C., Derrien, M., Isolauri, E., de Vos, W. M. & Salminen, S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl. Environ. Microbiol. 73, 7767–7770. https://doi.org/10.1128/AEM.01477-07 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Collado, M. C., Laitinen, K., Salminen, S. & Isolauri, E. Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr. Res. 72, 77–85. https://doi.org/10.1038/pr.2012.42 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Aakko, J. et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef. Microbes 8, 563–567. https://doi.org/10.3920/BM2016.0185 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Urbaniak, C. et al. Microbiota of human breast tissue. Appl. Environ. Microbiol. 80, 3007–3014. https://doi.org/10.1128/AEM.00242-14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Azad, M. B. et al. Gut microbiota of healthy Canadian infants: Profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185, 385–394. https://doi.org/10.1503/cmaj.121189 (2013).

    Article  Google Scholar 

  • 15.

    Bergström, A. et al. Establishment of intestinal microbiota during early life: A longitudinal. Explor. Study Large Cohort Danish Infants. https://doi.org/10.1128/AEM.00342-14 (2014).

    Article  Google Scholar 

  • 16.

    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703. https://doi.org/10.1016/j.chom.2015.04.004 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Neville, M. C. et al. Lactation and neonatal nutrition: Defining and refining the critical questions. J. Mammary Gland Biol. Neoplasia 17, 167–188. https://doi.org/10.1007/s10911-012-9261-5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335. https://doi.org/10.1038/nrmicro2746 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Ninonuevo, M. R. et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 54, 7471–7480. https://doi.org/10.1021/jf0615810 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez-Munguia, B. & Newburg, D. S. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and Fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112–14120. https://doi.org/10.1074/jbc.M207744200 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Stahl, B. et al. Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ionization mass spectrometry. Anal. Biochem. 223, 218–226. https://doi.org/10.1006/abio.1994.1577 (1994).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Urashima, T., Hirabayashi, J., Sato, S. & Kobata, A. Human milk oligosaccharides as essential tools for basic and application studies on galectins. Trends Glycosci. Glycotechnol. 30, 51–65. https://doi.org/10.4052/tigg.1734.1SE (2018).

    Article  Google Scholar 

  • 23.

    Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 239. https://doi.org/10.3389/fped.2018.00239 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Zivkovic, A. M., German, J. B., Lebrilla, C. B. & Mills, D. A. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. 108, 4653–4658. https://doi.org/10.1073/pnas.1000083107 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 25.

    Wu, S., Tao, N., German, J. B., Grimm, R. & Lebrilla, C. B. Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138–4151. https://doi.org/10.1021/pr100362f (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Weiss, G. A. & Hennet, T. The role of milk sialyllactose in intestinal bacterial colonization. Adv. Nutr. 3, 483S-488S. https://doi.org/10.3945/an.111.001651 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147–1162. https://doi.org/10.1093/glycob/cws074 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Vandenplas, Y. et al. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10, 1161. https://doi.org/10.3390/nu10091161 (2018).

    CAS  Article  PubMed Central  Google Scholar 

  • 29.

    Garrido, D., Dallas, D. C. & Mills, D. A. Consumption of human milk glycoconjugates by infant-associated bifidobacteria: Mechanisms and implications. Microbiology (United Kingdom) 159, 649–664. https://doi.org/10.1099/mic.0.064113-0 (2013).

    CAS  Article  Google Scholar 

  • 30.

    Tailford, L. E., Crost, E. H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6, 81. https://doi.org/10.3389/fgene.2015.00081 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Bansil, R. & Turner, B. S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170. https://doi.org/10.1016/j.cocis.2005.11.001 (2006).

    CAS  Article  Google Scholar 

  • 32.

    Abodinar, A., Tømmeraas, K., Ronander, E., Smith, A. M. & Morris, G. A. The physicochemical characterisation of pepsin degraded pig gastric mucin. Int. J. Biol. Macromol. 87, 281–286. https://doi.org/10.1016/J.IJBIOMAC.2016.02.062 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Johansson, M. E. V. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. 105, 15064–15069. https://doi.org/10.1073/pnas.0803124105 (2008).

    ADS  Article  PubMed  Google Scholar 

  • 34.

    Ottman, N. et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl. Environ. Microbiol. 83, e01014-e1017. https://doi.org/10.1128/AEM.01014-17 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Ottman, N. et al. Characterization of outer membrane proteome of akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. https://doi.org/10.3389/fmicb.2016.01157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Moran, A. P., Gupta, A. & Joshi, L. Sweet-talk: Role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. https://doi.org/10.1136/gut.2010.212704 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Kumazaki, T. & Yoshida, A. Biochemical evidence that secretor gene, Se, is a structural gene encoding a specific fucosyltransferase. Proc. Natl. Acad. Sci. 81, 4193–4197. https://doi.org/10.1073/pnas.81.13.4193 (1984).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 38.

    Korpela, K. et al. Fucosylated oligosaccharides in mother’s milk alleviate the effects of caesarean birth on infant gut microbiota. Sci. Rep. 8, 13757. https://doi.org/10.1038/s41598-018-32037-6 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C. & Schwab, C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front. Microbiol. 7, 1–12. https://doi.org/10.3389/fmicb.2016.00713 (2016).

    Article  Google Scholar 

  • 40.

    Amin, H. M., Hashem, A. M., Ashour, M. S. & Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic acid. J. Genet. Eng. Biotechnol. 11, 53–59. https://doi.org/10.1016/j.jgeb.2012.12.002 (2013).

    Article  Google Scholar 

  • 41.

    Staib, L. & Fuchs, T. M. Regulation of fucose and 1,2-propanediol utilization by Salmonella enterica serovar Typhimurium. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.01116 (2015).

    Article  Google Scholar 

  • 42.

    Faber, F. et al. Respiration of microbiota-derived 1,2-propanediol drives salmonella expansion during colitis. PLOS Pathog. 13, e1006129. https://doi.org/10.1371/journal.ppat.1006129 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Huang, K. et al. Biochemical characterisation of the neuraminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydr. Res. 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Tailford, L. E. et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nat. Commun. 6, 7624. https://doi.org/10.1038/ncomms8624 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    van Passel, M. W. J. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876. https://doi.org/10.1371/journal.pone.0016876 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 46.

    Nishiyama, K. et al. Bifidobacterium bifidum extracellular sialidase enhances adhesion to the mucosal surface and supports carbohydrate assimilation. MBio https://doi.org/10.1128/mBio.00928-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 47.

    Nishiyama, K. et al. Two extracellular sialidases from Bifidobacterium bifidum promote the degradation of sialyl-oligosaccharides and support the growth of Bifidobacterium breve. Anaerobe 52, 22–28. https://doi.org/10.1016/j.anaerobe.2018.05.007 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    Crost, E. H. et al. The mucin-degradation strategy of Ruminococcus gnavus: The importance of intramolecular trans-sialidases. Gut Microbes 7, 302–312. https://doi.org/10.1080/19490976.2016.1186334 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Brigham, C. et al. Sialic acid (N-acetyl neuraminic acid) utilization by Bacteroides fragilis requires a novel N-acetyl mannosamine epimerase. J. Bacteriol. 191, 3629–3638. https://doi.org/10.1128/JB.00811-08 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Chia, L. W. et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach. Antonie Van Leeuwenhoek 111, 859–873. https://doi.org/10.1007/s10482-018-1040-x (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Kosciow, K. & Deppenmeier, U. Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2020.01.246 (2020).

    Article  PubMed  Google Scholar 

  • 52.

    Guo, B.-S. et al. Cloning, purification and biochemical characterisation of a GH35 beta-1,3/beta-1,6-galactosidase from the mucin-degrading gut bacterium Akkermansia muciniphila. Glycoconj. J. 35, 255–263. https://doi.org/10.1007/s10719-018-9824-9 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Kosciow, K. & Deppenmeier, U. Characterization of a phospholipid-regulated β-galactosidase from Akkermansia muciniphila involved in mucin degradation. Microbiologyopen https://doi.org/10.1002/mbo3.796 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    van der Ark, K. C. H. et al. Model-driven design of a minimal medium for Akkermansia muciniphila confirms mucus adaptation. Microb. Biotechnol. 11, 476–485. https://doi.org/10.1111/1751-7915.13033 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    Wang, M. et al. Cloning, purification and biochemical characterization of two β-N-acetylhexosaminidases from the mucin-degrading gut bacterium Akkermansia muciniphila. Carbohydr. Res. 457, 1–7. https://doi.org/10.1016/j.carres.2017.12.007 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335. https://doi.org/10.1038/ismej.2014.14 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Belzer, C. et al. Microbial metabolic networks at the mucus layer lead to diet-independent butyrate and vitamin B 12 production by intestinal symbionts. MBio 8, 1–14. https://doi.org/10.1128/mBio.00770-17 (2017).

    Article  Google Scholar 

  • 58.

    Allen, L. H. B vitamins in breast milk: Relative importance of maternal status and intake, and effects on infant status and function. Adv. Nutr. 3, 362–369. https://doi.org/10.3945/an.111.001172 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Ottman, N. et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS ONE 12, e0173004. https://doi.org/10.1371/journal.pone.0173004 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113. https://doi.org/10.1038/nm.4236 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 61.

    McPhee, M. D., Atkinson, S. A. & Cole, D. E. C. Quantitation of free sulfate and total sulfoesters in human breast milk by ion chromatography. J. Chromatogr. B Biomed. Sci. Appl. 527, 41–50. https://doi.org/10.1016/S0378-4347(00)82081-2 (1990).

    CAS  Article  Google Scholar 

  • 62.

    Coppa, G. V. et al. Composition and structure elucidation of human milk glycosaminoglycans. Glycobiology 21, 295–303. https://doi.org/10.1093/glycob/cwq164 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 63.

    Tseng, T.-T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiol. 9, S2. https://doi.org/10.1186/1471-2180-9-S1-S2 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Galdiero, S. et al. Microbe–host interactions: Structure and role of gram-negative bacterial porins. Curr. Protein Pept. Sci. 13, 843–854. https://doi.org/10.2174/138920312804871120 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Brugman, S., Perdijk, O., van Neerven, R. J. J. & Savelkoul, H. F. J. Mucosal immune development in early life: Setting the stage. Arch. Immunol. Ther. Exp. (Warsz) 63, 251–268. https://doi.org/10.1007/s00005-015-0329-y (2015).

    CAS  Article  Google Scholar 

  • 66.

    Duerr, C. U. & Hornef, M. W. The mammalian intestinal epithelium as integral player in the establishment and maintenance of host–microbial homeostasis. Semin. Immunol. 24, 25–35. https://doi.org/10.1016/j.smim.2011.11.002 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Hoskins, L. C. et al. Mucin degradation in human colon ecosystems isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest 75, 944–953 (1985).

    CAS  Article  Google Scholar 

  • 68.

    Stams, A. J., Van Dijk, J. B., Dijkema, C. & Plugge, C. M. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl. Environ. Microbiol. 59, 1114–1119 (1993).

    CAS  Article  Google Scholar 

  • 69.

    Mank, M., Welsch, P., Heck, A. J. R. & Stahl, B. Label-free targeted LC-ESI-MS2 analysis of human milk oligosaccharides (HMOS) and related human milk groups with enhanced structural selectivity. Anal. Bioanal. Chem. 411, 231–250. https://doi.org/10.1007/s00216-018-1434-7 (2019).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Rupakula, A. et al. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: Lessons from tiered functional genomics. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120325. https://doi.org/10.1098/rstb.2012.0325 (2013).

    CAS  Article  Google Scholar 

  • 71.

    Lu, J. et al. Filter-aided sample preparation with dimethyl labeling to identify and quantify milk fat globule membrane proteins. J. Proteomics 75, 34–43. https://doi.org/10.1016/j.jprot.2011.07.031 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Wendrich, J. R., Boeren, S., Möller, B. K., Weijers, D. & De Rybel, B. In vivo identification of plant protein complexes using IP-MS/MS. in Methods in Molecular Biology vol. 1497 147–158 (Humana Press, New York, NY, 2017). https://doi.org/10.1007/978-1-4939-6469-7_14.

  • 73.

    Hubner, N. C. et al. Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J. Cell Biol. 189, 739–754. https://doi.org/10.1083/jcb.200911091 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 74.

    Smaczniak, C. et al. Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protocols https://doi.org/10.1038/nprot.2012.129 (2012).

    Article  PubMed  Google Scholar 

  • 75.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction. Termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526. https://doi.org/10.1074/mcp.M113.031591 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 76.

    Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 77.

    Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics quality control: Quality control software for MaxQuant results. J. Proteome Res. 15, 777–787. https://doi.org/10.1021/acs.jproteome.5b00780 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Vizcaíno, J. A. et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44, D447–D456. https://doi.org/10.1093/nar/gkv1145 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 79.

    Morris, J. B. Enzymatic assay for subnanomole amounts of l-fucose. Anal. Biochem. 121, 129–134. https://doi.org/10.1016/0003-2697(82)90565-6 (1982).

    CAS  Article  PubMed  Google Scholar 

  • 80.

    Rosendale, D. I. et al. Characterizing kiwifruit carbohydrate utilization in vitro and its consequences for human faecal microbiota. J. Proteome Res. 11, 5863–5875. https://doi.org/10.1021/pr300646m (2012).

    CAS  Article  PubMed  Google Scholar 

  • 81.

    van Gelder, A. H., Aydin, R., Alves, M. M. & Stams, A. J. M. 1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain. Microb. Biotechnol. 5, 573–578. https://doi.org/10.1111/j.1751-7915.2011.00318.x (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Species distribution models advance our knowledge of the Neanderthals’ paleoecology on the Iranian Plateau

    Six strategic areas identified for shared faculty hiring in computing