in

Alteration in the potential of sediment phosphorus release along series of rubber dams in a typical urban landscape river

  • 1.

    McDowell, R. W., Larned, S. T. & Houlbrooke, D. J. Nitrogen and phosphorus in New Zealand streams and rivers: control and impact of eutrophication and the influence of land management. N. Zeal J. Mar. Fresh 43, 985–995 (2009).

  • 2.

    Hilton, J., O’Hare, M., Bowes, M. J. & Jones, J. I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total. Env. 365, 66–83, https://doi.org/10.1016/j.scitotenv.2006.02.055 (2006).

  • 3.

    Cunha-Santino, M. B., Fushita, Â. T. & Bianchini, I. A modeling approach for a cascade of reservoirs in the Juquia-Guacu River (Atlantic Forest, Brazil). Ecol. Model. 356, 48–58, https://doi.org/10.1016/j.ecolmodel.2017.04.008 (2017).

    • Article
    • Google Scholar
  • 4.

    Ran, X. B. et al. Phosphorus speciation, transformation and retention in the Three Gorges Reservoir, China. Mar. Freshw. Res. 67, 173–186, https://doi.org/10.1071/MF14344 (2016).

  • 5.

    Maavara, T. et al. Global phosphorus retention by river damming. P Natl Acad. Sci. USA 112, 15603–15608, https://doi.org/10.1073/pnas.1511797112 (2015).

  • 6.

    Némery, J. et al. Carbon, nitrogen, phosphorus, and sediment sources and retention in a small eutrophic tropical reservoir. Aquat. Sci. 78, 171–189, https://doi.org/10.1007/s00027-015-0416-5 (2016).

  • 7.

    Jeong, K. S., Kim, D. K. & Joo, G. J. Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Res. 41, 1269–1279, https://doi.org/10.1016/j.watres.2006.11.054 (2007).

  • 8.

    Thompson, P. A., Waite, A. M. & McMahon, K. Dynamics of a cyanobacterial bloom in a hypereutrophic, stratified weir pool. Mar. Freshw. Res. 54, 27–37, https://doi.org/10.1071/MF02060 (2003).

    • Article
    • Google Scholar
  • 9.

    Kim, L. H., Choi, E., Gil, K. I. & Stenstrom, M. K. Phosphorus release rates from sediments and pollutant characteristics in Han River, Seoul, Korea. Sci. Total. Env. 321, 115–125, https://doi.org/10.1016/j.scitotenv.2003.08.018 (2004).

  • 10.

    Vo, N. X. Q., Doan, T. V. & Kang, H. Impoundments increase potential for phosphorus retention and remobilization in an urban stream. Environ. Eng. Res. 19, 175–184 (2014).

    • Article
    • Google Scholar
  • 11.

    Zhang, Z. B., Tan, X. B., Wei, L. L., Yu, S. M. & Wu, D. J. Comparison between the lower Nansi Lake and its inflow rivers in sedimentary phosphorus fractions and phosphorus adsorption characteristics. Env. Earth Sci. 66, 1569–1576, https://doi.org/10.1007/s12665-011-1400-6 (2012).

  • 12.

    Zhang, Z. J. et al. Properties of phosphorus retention in sediments under different hydrological regimes: A laboratory-scale simulation study. J. Hydrol. 404, 109–116, https://doi.org/10.1016/j.jhydrol.2010.06.018 (2011).

  • 13.

    Gainswin, B. E., House, W. A., Leadbeater, B. S. C., Armitage, P. D. & Patten, J. The effects of sediment size fraction and associated algal biofilms on the kinetics of phosphorus release. Sci. Total. Env. 360, 142–157, https://doi.org/10.1016/j.scitotenv.2005.08.034 (2006).

  • 14.

    Small, G. E. et al. Phosphorus retention in a lowland Neotropical stream following an eight-year enrichment experiment. Freshw. Sci. 35, 1–11, https://doi.org/10.1086/684491 (2016).

  • 15.

    Solim, S. U. & Wanganeo, A. Factors influencing release of phosphorus from sediments in a high productive polymictic lake system. Water Sci. Technol. 60, 1013–1023, https://doi.org/10.2166/wst.2009.445 (2009).

  • 16.

    Liang, Z., Liu, Z. M., Zhen, S. M. & He, R. Phosphorus speciation and effects of environmental factors on release of phosphorus from sediments obtained from Taihu Lake, Tien Lake, and East Lake. Toxicol. Env. Chem. 97, 335–348, https://doi.org/10.1080/02772248.2015.1050186 (2015).

  • 17.

    He, J. et al. Analysis of factors controlling sediment phosphorus flux potential of wetlands in Hulun Buir grassland by principal component and path analysis method. Environ Monit Assess 189, Artn 61710.1007/S10661-017-6312-9 (2017).

  • 18.

    Emelko, M. B. et al. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Glob. Change Biol. 22, 1168–1184, https://doi.org/10.1111/gcb.13073 (2016).

  • 19.

    Palmer-Felgate, E. J., Jarvie, H. P., Withers, P. J. A., Mortimer, R. J. G. & Krom, M. D. Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agr. Ecosyst. Env. 134, 53–66, https://doi.org/10.1016/j.agee.2009.05.014 (2009).

  • 20.

    Pardo, P., López-Sánchez, J. F. & Rauret, G. Relationships between phosphorus fractionation and major components in sediments using the SMT harmonised extraction procedure. Anal. Bioanal. Chem. 376, 248–254, https://doi.org/10.1007/s00216-003-1897-y (2003).

  • 21.

    Huang, L., Fang, H., He, G. & Chen, M. Phosphorus adsorption on natural sediments with different pH incorporating surface morphology characterization. Env. Sci. Pollut. R. 23, 18883–18891 (2016).

  • 22.

    Zhang, W. Q. et al. Characteristics, distribution and ecological risk assessment of phosphorus in surface sediments from different ecosystems in Eastern China: A P-31-nuclear magnetic resonance study. Ecol. Eng. 75, 264–271, https://doi.org/10.1016/j.ecoleng.2014.11.055 (2015).

  • 23.

    Rothe, M. et al. Sedimentary sulphur:iron ratio indicates vivianite occurrence: A study from two contrasting freshwater systems. Plos One 10, e0143737, doi:ARTN e014373710.1371/journal.pone.0143737 (2015).

  • 24.

    Jalali, M. & Peikam, E. N. Phosphorus sorption-desorption behaviour of river bed sediments in the Abshineh river, Hamedan, Iran, related to their composition. Env. Monit. Assess. 185, 537–552, https://doi.org/10.1007/s10661-012-2573-5 (2013).

  • 25.

    Teodoru, C. & Wehrli, B. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 76, 539–565, https://doi.org/10.1007/s10533-005-0230-6 (2005).

  • 26.

    Matisoff, G., Watson, S. B., Guo, J., Duewiger, A. & Steely, R. Sediment and nutrient distribution and resuspension in Lake Winnipeg. Sci. Total. Env. 575, 173–186 (2016).

    • Article
    • Google Scholar
  • 27.

    Zhang, W. Q. et al. Evidence for organic phosphorus activation and transformation at the sediment-water interface during plant debris decomposition. Sci. Total. Env. 583, 458–465, https://doi.org/10.1016/j.scitotenv.2017.01.103 (2017).

  • 28.

    Wang, J. Y. & Pant, H. K. Enzymatic hydrolysis of organic phosphorus in river bed sediments. Ecol. Eng. 36, 963–968, https://doi.org/10.1016/j.ecoleng.2010.03.006 (2010).

    • Article
    • Google Scholar
  • 29.

    Pan, M., Zhu, L., Qin, W. H., Guo, Z. Y. & Xia, X. Effects of aeration modes on transformation of phosphorus in surface sediment downstream of a municipal sewage treatment plant. Desalin Water Treat. 57, 10850–10858, https://doi.org/10.1080/19443994.2015.1038591 (2016).

  • 30.

    Zhang, W. Q. et al. Do NH3 and chemical oxygen demand induce continuous release of phosphorus from sediment in heavily polluted rivers? Ecol. Eng. 102, 24–30, https://doi.org/10.1016/j.ecoleng.2017.02.003 (2017).

    • Article
    • Google Scholar
  • 31.

    Zhang, Y. et al. Release characteristics of sediment phosphorus in all fractions of West Lake, Hang Zhou, China. Ecol. Eng. 95, 645–651, https://doi.org/10.1016/j.ecoleng.2016.06.014 (2016).

  • 32.

    Vilmin, L. et al. Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River. Biogeochemistry 122, 229–251, https://doi.org/10.1007/s10533-014-0038-3 (2015).

  • 33.

    Pulley, S., Foster, I. & Antunes, P. The dynamics of sediment-associated contaminants over a transition from drought to multiple flood events in a lowland UK catchment. Hydrol. Process. 30, 704–719, https://doi.org/10.1002/hyp.10616 (2016).

  • 34.

    Wang, T. X. et al. Spatial distribution, adsorption/release characteristics, and environment influence of phosphorus on sediment in reservoir. Water-Sui 9, https://doi.org/10.3390/W9090724 (2017).

    • Article
    • Google Scholar
  • 35.

    Lopez, P., Marće, R., Ordoñez, J., Urrutia, I. & Armengol, J. Sedimentary phosphorus in a cascade of five reservoirs (Lozoya River, Central Spain). Lake Reserv. Manage 25, 39–48, https://doi.org/10.1080/07438140802714353 (2009).

    • Article
    • Google Scholar
  • 36.

    Liu, Q. et al. Longitudinal variability of phosphorus fractions in sediments of a canyon reservoir due to cascade dam construction: A case study in Lancang River, China. PLoS One 8, e83329, https://doi.org/10.1371/journal.pone.0083329 (2013).

  • 37.

    Klaver, G., van Os, B., Negrel, P. & Petelet-Giraud, E. Influence of hydropower dams on the composition of the suspended and riverbank sediments in the Danube. Env. Pollut. 148, 718–728, https://doi.org/10.1016/j.envpol.2007.01.037 (2007).

  • 38.

    von Schiller, D. et al. Regulation causes nitrogen cycling discontinuities in Mediterranean rivers. Sci. Total. Env. 540, 168–177, https://doi.org/10.1016/j.scitotenv.2015.07.017 (2016).

  • 39.

    Gao, L. et al. Aquatic environmental changes and anthropogenic activities reflected by the sedimentary records of the Shima River, Southern China. Env. Pollut. 224, 70–81, https://doi.org/10.1016/j.envpol.2016.12.056 (2017).

  • 40.

    Lou, B. F. & Yin, S. Y. Spatial and seasonal distribution of phosphorus in the mainstem within the Three Gorges Reservoir before and after impoundment. Water Sci. Technol. 73, 636–642, https://doi.org/10.2166/wst.2015.516 (2016).

  • 41.

    Bayram, A., Önsoy, H., Kӧmürcü, M. İ. & Tüfekçi, M. Reciprocal influence of Kurtun Dam and wastewaters from the settlements on water quality in the stream HarAYit, NE Turkey. Env. Earth Sci. 72, 2849–2860, https://doi.org/10.1007/s12665-014-3190-0 (2014).

  • 42.

    Liu, Q. et al. The phosphorus speciations in the sediments up- and down-stream of cascade dams along the middle Lancang River. Chemosphere 120, 653–659, https://doi.org/10.1016/j.chemosphere.2014.10.012 (2015).

  • 43.

    Bao, L., Li, X. & Cheng, P. Phosphorus retention along a typical urban landscape river with a series of rubber dams. J. Env. Manage 228, 55–64 (2018).

  • 44.

    Zhou, A. M., Tang, H. X. & Wang, D. S. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Res. 39, 1245–1254, https://doi.org/10.1016/j.watres.2005.01.026 (2005).

  • 45.

    Jarvie, H. P. et al. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J. Hydrol. 304, 51–74, https://doi.org/10.1016/j.jhydrol.2004.10.002 (2005).

  • 46.

    Ruban, V. et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments – A synthesis of recent works. Fresen J. Anal. Chem. 370, 224–228, https://doi.org/10.1007/s002160100753 (2001).

  • 47.

    Udden, J. A. Mechanical composition of clastic sediments. Bull. Geol. Soc. Am. 25, 655–744 (1914).

    • Article
    • Google Scholar
  • 48.

    He, H. J. et al. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary. Chin. J. Oceanol. Limn. 27, 859–868, https://doi.org/10.1007/s00343-009-9021-6 (2009).

  • 49.

    Bi, J. A Review Of Statistical Methods for Determination Of Relative Importance Of Correlated Predictors And Identification Of Drivers Of Consumer Liking. J. Sens. Stud. 27, 87–101, https://doi.org/10.1111/j.1745-459X.2012.00370.x (2012).

    • Article
    • Google Scholar
  • 50.

    Pyrce, R. S. & Ashmore, P. E. The relation between particle path length distributions and channel morphology in gravel-bed streams: a synthesis. Geomorphology 56, 167–187, https://doi.org/10.1016/S0169-555x(02)00077-1 (2003).

  • 51.

    Zhu, H. W., Wang, D. Z., Cheng, P. D., Fan, J. Y. & Zhong, B. C. Effects of sediment physical properties on the phosphorus release in aquatic environment. Sci. China Phys. Mech. 58, 024702, https://doi.org/10.1007/S11433-014-5582-2 (2015).

    • Article
    • Google Scholar
  • 52.

    Doyle, M. W., Stanley, E. H. & Harbor, J. M. Hydrogeomorphic controls on phosphorus retention in streams. Water Resour Res 39, https://doi.org/10.1029/2003wr002038 (2003).

  • 53.

    Gao, Y., Cornwell, J. C., Stoecker, D. K. & Owens, M. S. Influence of cyanobacteria blooms on sediment biogeochemistry and nutrient fluxes. Limnol. Oceanogr. 59, 959–971, https://doi.org/10.4319/lo.2014.59.3.0959 (2014).

  • 54.

    Yu, J. H. et al. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface. Sci. Total. Env. 592, 662–673, https://doi.org/10.1016/j.scitotenv.2017.02.219 (2017).

  • 55.

    Kralchevska, R. P. et al. Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Res. 103, 83–91, https://doi.org/10.1016/j.watres.2016.07.021 (2016).

  • 56.

    Baasch, A. & Goetz, D. Release of substances from secondary materials in field conditions. Env. Eng. Sci. 23, 118–124 (2006).

  • 57.

    Al-Enezi, E., Bockelmann-Evans, B. & Falconer, R. Phosphorus adsorption/desorption processes of estuarine sediment: a case study-Loughor Estuary, UK. Arab J Geosci 9, 200, https://doi.org/10.1007/S12517-015-2014-1 (2016).


  • Source: Ecology - nature.com

    Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth

    30 years of the iron hypothesis of ice ages