in

Altered tropical seascapes influence patterns of fish assemblage and ecological functions in the Western Indian Ocean

  • 1.

    Turner, M. G. Landscape ecology: the effect of pattern on process. Ann. Rev. Ecol. Syst. 20, 171–197 (1989).

    Google Scholar 

  • 2.

    Wiens, J. A. Spatial scaling in ecology. Func. Ecol. 3, 385–397 (1989).

    Google Scholar 

  • 3.

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Google Scholar 

  • 4.

    Dunning, J. B. Jr., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175 (1992).

    Google Scholar 

  • 5.

    Boström, C., Pittman, S. J., Simenstad, C. & Kneib, R. T. Seascape ecology of coastal biogenic habitats: advances, gaps, and challenges. Mar. Ecol. Prog. Ser. 427, 191–217 (2011).

    ADS  Google Scholar 

  • 6.

    Kremen, C., Williams, N. M. & Thorp, R. W. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. USA 99, 16812–16816 (2002).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Robinson, N. M. et al. Refuges for fauna in fire prone landscapes: their ecological function and importance. J. Appl. Ecol. 50, 1321–1329 (2013).

    Google Scholar 

  • 8.

    Chapin, F. S. III. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS  PubMed  Google Scholar 

  • 9.

    Michel, N., Burel, F. & Butet, A. How does landscape use influence small mammal diversity, abundance and biomass in hedgerow networks of farming landscapes?. Acta Oecol. 30, 11–20 (2006).

    ADS  Google Scholar 

  • 10.

    Kirk, D. A., Lindsay, K. E. & Brook, R. W. Risk of agricultural practices and habitat change to farmland birds. Avi. Conserv. Ecol. 6(1), 5 (2011).

    Google Scholar 

  • 11.

    Connell, S. D. & Glasby, T. M. Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Mar. Environ. Res. 47, 373–387 (1999).

    CAS  Google Scholar 

  • 12.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6(5), e122. https://doi.org/10.1371/journal.pbio.0060122 (2008).

    CAS  Article  PubMed Central  Google Scholar 

  • 14.

    O’Connor, R. J. & Shrubb, M. Farming and Birds (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  • 15.

    Galbraith, H. Effects of agriculture on the breeding ecology of lapwings Vanellus vanellus. J. Appl. Ecol. 25, 487–503 (1988).

    Google Scholar 

  • 16.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).

    Google Scholar 

  • 17.

    Lubchenco, J. et al. The sustainable biosphere initiative: an ecological research agenda. Ecology 72, 371–412 (1991).

    Google Scholar 

  • 18.

    Andrén, H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71, 355–366 (1994).

    Google Scholar 

  • 19.

    McHugh, D. J. Worldwide distribution of commercial resources of seaweeds including Gelidium. Hydrobiologia 221, 19–29 (1991).

    Google Scholar 

  • 20.

    Jensen, A. Present and future needs for algae and algal products. Hydrobiologia 260, 15–23 (1993).

    Google Scholar 

  • 21.

    Ask, E. I., Batibasaga, A., Zertuche-Gonzalez, J. A. & de San, M. Three decades of Kappaphycus alvarezii (Rhodophyta) introduction to non-endemic locations. In 17th International Seaweed Symposium (eds Chapman, A. R. O. et al.) 49–57 (Oxford Univ Press, Cape Town, 2001).

    Google Scholar 

  • 22.

    Rönnbäck, P., Bryceson, I. & Kautsky, N. Coastal aquaculture development in eastern Africa and the Western Indian Ocean: prospects and problems for food security and local economies. Ambio 31, 537–542 (2002).

    PubMed  Google Scholar 

  • 23.

    Food and Agriculture Organization (FAO). The state of world fisheries and aquaculture. Rome, Italy pp. 243 (2014).

  • 24.

    Abhilash, K. R. et al. Impact of long-term seaweed farming on water quality: a case study from Palk Bay, India. J. Coast. Conserv. 23, 485–499 (2019).

    Google Scholar 

  • 25.

    Eggertsen, M. & Halling, C. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio https://doi.org/10.1007/s13280-020-01319-7 (2020).

    Article  PubMed  Google Scholar 

  • 26.

    Hehre, E. J. & Meeuwig, J. J. A Global analysis of the relationship between farmed seaweed production and herbivorous fish catch. PLoS ONE 11(2), e148250. https://doi.org/10.1371/journal.pone.0148250 (2016).

    CAS  Article  Google Scholar 

  • 27.

    Hedberg, N. et al. Habitat preference for seaweed farming—A case study from Zanzibar, Tanzania. Ocean Coast. Manag. 154, 186–195. https://doi.org/10.1016/j.ocecoaman.2018.01.016 (2018).

    Article  Google Scholar 

  • 28.

    de la Torre-Castro, M. & Rönnbäck, P. Links between humans and seagrasses—an example from tropical east Africa. Ocean Coast. Manag. 47, 361–387 (2004).

    Google Scholar 

  • 29.

    Halling, C., Wikström, S. A., Lilliesköld-Sjöö Mörk, E., Lundør, E. & Zuccarello, G. C. Introduction of Asian strains and low genetic variation in farmed seaweeds: indications for new management practices. J. Appl. Phycol. 25, 89–95 (2013).

    Google Scholar 

  • 30.

    Tano, S. A., Halling, C., Eggertsen, L., Buriyo, A. & Wikström, S. A. Extensive spread of farmed seaweeds causes a shift from native to non-native haplotypes in natural seaweed beds. Mar. Biol. 162, 1983–1992 (2015).

    Google Scholar 

  • 31.

    Conklin, E. J. & Smith, J. E. Abundance and spread of the invasive red algae, Kappaphycus spp., in Kane’ohe Bay, Hawai’i and an experimental assessment of management options. Biol. Invat. 7, 1029–1039 (2005).

    Google Scholar 

  • 32.

    Keats, D. W., Steele, D. H. & South, G. R. The role of fleshy macroalgae in the ecology of juvenile cod (Gadus morhua L,) in inshore waters off eastern Newfoundland. Can. J. Fish. Aquat. Sci. 65, 49–53. https://doi.org/10.1139/Z87-008 (1987).

    Article  Google Scholar 

  • 33.

    Carr, M. H. Effects of macroalgal dynamics on recruitment of a temperate reef fish. Ecol. Soc. Am. 75, 1320–1333 (1994).

    Google Scholar 

  • 34.

    Levin, P. & Hay, M. Responses of temperate reef fishes to alterations in algal structure and species composition. Mar. Ecol. Prog. Ser. 134, 37–47 (1996).

    ADS  Google Scholar 

  • 35.

    Bertocci, I., Araújo, R., Oliveira, P. & Sousa-Pinto, I. Potential effects of kelp species on local fisheries. J. Appl. Ecol. 52, 1216–1226 (2015).

    Google Scholar 

  • 36.

    Wilson, S. K. et al. Seasonal changes in habitat structure underpin shifts in macroalgae-associated tropical fish communities. Mar. Biol. 161, 2597–2607 (2014).

    Google Scholar 

  • 37.

    Tano, S. et al. Tropical seaweed beds are important habitats for mobile invertebrate epifauna. Estuar. Coast. Shelf Sci. 183, 1–12 (2016).

    ADS  Google Scholar 

  • 38.

    Tano, S. A. et al. Tropical seaweed beds as important habitats for juvenile fish. Mar. Freshw. Res. 68, 1921–1934 (2017).

    Google Scholar 

  • 39.

    Eggertsen, L. et al. Seaweed beds support more juvenile reef fish than seagrass beds: carrying capacity in a south-western Atlantic tropical seascape. Estuar. Coast. Shelf Sci. 196, 97–108. https://doi.org/10.1016/j.ecss.2017.06.041 (2017).

    ADS  Article  Google Scholar 

  • 40.

    Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).

    Google Scholar 

  • 41.

    Garrigue, C. Macrophyte associations on the soft bottoms of the south-west lagoon of New Caledonia: description, structure and biomass. Bot. Mar. 38, 481–492 (1995).

    Google Scholar 

  • 42.

    Kobryn, H. T., Wouters, K., Beckley, L. E. & Heege, T. Ningaloo Reef: shallow marine habitats mapped using a hyperspectral sensor. PLoS ONE 8, e70105 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Rossier, O. & Kulbicki, M. A comparison of fish assemblages from two types of algal beds and coral reefs in the south-west lagoon of New Caledonia. Cybium 24, 3–26 (2000).

    Google Scholar 

  • 44.

    Chaves, L. T. C., Pereira, P. H. C. & Feitosa, J. L. L. Coral reef fish association with macroalgal beds on a tropical reef system in North-eastern Brazil. Mar. Freshw. Res. 64, 1101–1111 (2013).

    Google Scholar 

  • 45.

    Evans, R. D., Wilson, S. K., Field, S. N. & Moore, J. A. Y. Importance of macroalgal fields as coral reef fish nursery habitat in north-west Australia. Mar. Biol. 161, 599–607 (2014).

    Google Scholar 

  • 46.

    van Lier, J. R., Wilson, S. K., Depczynski, M., Wenger, L. N. & Fulton, C. J. Habitat connectivity and complexity underpin fish community structure across a seascape of tropical macroalgae meadows. Landsc. Ecol. 33, 1287–1300 (2018).

    Google Scholar 

  • 47.

    Eggertsen, M., Chacin, D. H., Åkerlund, C., Halling, C. & Berkström, C. Contrasting distribution and foraging patterns of herbivorous and detritivorous fishes across multiple habitats in a tropical seascape. Mar. Biol. 166, 51. https://doi.org/10.1007/s00227-019-3498-0 (2019).

    Article  Google Scholar 

  • 48.

    Johnstone, R. W. & Ólafsson, E. Some environmental aspects of open water algal cultivation, Zanzibar, Tanzania. Ambio 24, 465–469 (1995).

    Google Scholar 

  • 49.

    Ólafsson, E., Johnstone, R. W. & Ndaro, S. G. M. Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J. Exp. Mar. Biol. Ecol. 191, 101–117 (1995).

    Google Scholar 

  • 50.

    Eklöf, J. S., de la Torre-Castro, M., Adelsköld, L., Jiddawi, N. S. & Kautsky, N. Differences in macrofaunal and seagrass assemblages in seagrass beds with and without seaweed farms. Estuar. Coast. Shelf Sci. 63, 385–396 (2005).

    ADS  Google Scholar 

  • 51.

    Bergman, K. C., Svensson, S. & Öhman, M. C. Influence of algal farming on fish assemblages. Mar. Pollu. Bull. 42, 1379–1389 (2001).

    CAS  Google Scholar 

  • 52.

    Russell, D. Ecology of the imported red seaweed Euchema striatum Schmitz on Coconut Island, Oahu, Hawaii. Pac. Sci. 37, 87–107 (1983).

    Google Scholar 

  • 53.

    Eklöf, J. S., Henriksson, R. & Kautsky, N. Effects of tropical open-water seaweed farming on seagrass ecosystem structure and function. Mar. Ecol. Prog. Ser. 325, 73–84 (2006).

    ADS  Google Scholar 

  • 54.

    Eklöf, J. S., de la Torre-Castro, M., Nilsson, C. & Rönnbäck, P. How do seaweed farms influence local fishery catches in a seagrass-dominated setting in Chwaka Bay, Zanzibar?. Aquat. Liv. Resour. 19, 137–147 (2006).

    Google Scholar 

  • 55.

    Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish−habitat interactions. Hydrobiologia 498, 191–211 (2003).

    Google Scholar 

  • 56.

    McClanahan, T. R. Seasonality in East Africa’s coastal waters. Mar. Ecol. Prog. Ser. 44, 191–199 (1988).

    ADS  Google Scholar 

  • 57.

    Msuya, F. E. Cultivation and utilisation of red seaweeds in the Western Indian Ocean (WIO) Region. J. Appl. Phycol. 26, 699–705 (2014).

    CAS  Google Scholar 

  • 58.

    Msuya, F. E. The impact of seaweed farming on the social and economic structure of seaweed farming communities in Zanzibar, Tanzania. In World Seaweed Resources: An Authoritative Reference System (eds Critchley, A. T. et al.) (ETI BioInformatics, Amsterdam, 2006).

    Google Scholar 

  • 59.

    Msuya, F. E. Social and economic dimensions of carrageenan seaweed farming in the United Republic of Tanzania. In Social and Economic Dimensions of Carrageenan Seaweed Farming Fisheries and Aquaculture Technical Paper No. 580 (eds Valderrama, D. et al.) 115–146 (FAO, Rome, 2013).

    Google Scholar 

  • 60.

    Eklöf, J.S., Msuya, F.E., Lyimo, T.J. & Buriyo, A.S. Seaweed Farming in Chwaka Bay: A Sustainable Alternative in Aquaculture? – In: eds. de la Torre-Castro, M. and T. J. Lyimo, People, Nature and Research in Chwaka Bay, Zanzibar, Tanzania. ISBN: 978-9987-9559-1-6. Zanzibar Town: WIOMSA, 213–233 (2012).

  • 61.

    Valderrama, D. et al. The economics of Kappaphycus seaweed cultivation in developing countries: a comparative analysis of farming systems. Aquacul. Econ. Manag. 19, 251–277. https://doi.org/10.1080/13657305.2015.1024348 (2015).

    Article  Google Scholar 

  • 62.

    Berkström, C., Jörgensen, T. L. & Hellström, M. Ecological connectivity and niche differentiation between two closely related fish species in the mangrove-seagrass-coral reef continuum. Mar. Ecol. Prog. Ser. 477, 01–215 (2013).

    Google Scholar 

  • 63.

    Horrill, J. C., Darwall, W. R. T. & Ngoile, M. Development of a marine protected area: Mafia Island, Tanzania. Ambio 25, 50–57 (1996).

    Google Scholar 

  • 64.

    Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fish. 3, 49–63. https://doi.org/10.1007/BF00006308 (1978).

    Article  Google Scholar 

  • 65.

    Lawrence, J. M. & Agatsuma, Y. Chapter 32: Tripneustes. In Sea urchins: Biology and Ecology (ed. Lawrence, J. M.) 491–507 (Elsevier BV, Amsterdam, 2013).

    Google Scholar 

  • 66.

    Wall, K. R. & Stallings, C. D. Subtropical epibenthos varies with location, reef type, and grazing intensity. J. Exp. Mar. Biol. Ecol. 509, 54–65 (2018).

    Google Scholar 

  • 67.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 68.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Google Scholar 

  • 69.

    Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monog. 67, 345–366 (1997).

    Google Scholar 

  • 70.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Google Scholar 

  • 71.

    Legendre, P. & Legendre, L. Numerical Ecology. Vol 24 3rd Edition (2012).

  • 72.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  MATH  Google Scholar 

  • 73.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).

    PubMed  Google Scholar 

  • 74.

    Jones, D.L. Fathom Toolbox for Matlab: Software for Multivariate Ecological and Oceanographic Data Analysis. College of Marine Science, University of South Florida, St. Petersburg, FL, USA (2017) (Available from: https://www.marine.usf.edu/research/matlab-resources/fathom-toolbox-for-matlab/).

  • 75.

    Rojas-Sepulveda, J. Seaweeds, seagrasses, or both: feeding preferences of an important herbivore within a tropical seascape. Master Thesis. Stockholm University, Sweden (2017).

  • 76.

    Anyango, J. O., Mlewa, C. M. & Mwaluma, J. Abundance, diversity and trophic status of wild fish around seaweed farms in Kibuyuni, South Coast Kenya. Int. J. Fish. Aqua. Stud. 5, 440–446 (2017).

    Google Scholar 

  • 77.

    Savino, J. F. & Stein, R. A. Predator–prey interaction between largemouth bass and bluegills as influenced by simulated submersed vegetation. Trans. Am. Fish. Soc. 111, 255–266 (1982).

    Google Scholar 

  • 78.

    Anderson, T. W. Role of macroalgal structure in the distribution and abundance of a temperate reef fish. Mar. Ecol. Prog. Ser. 113, 279–290 (1994).

    ADS  Google Scholar 

  • 79.

    Lim, I. E., Wilson, S. K., Holmes, T. H., Noble, M. M. & Fulton, C. Specialization within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7(2), e01212. https://doi.org/10.1002/ecs2.1212 (2016).

    Article  Google Scholar 

  • 80.

    Wenger, L. N., van Lier, J. R. & Fulton, C. J. Microhabitat selectivity shapes the seascape ecology of a carnivorous macroalgae-associated tropical fish. Mar. Ecol. Prog. Ser. 590, 187–200 (2018).

    ADS  Google Scholar 

  • 81.

    Tang, S., Graba-Landra, A. & Hoey, A. S. Density and height of Sargassum influence rabbit (F. siganidae) settlement on inshore reef flats of the Great Barrier reef. Coral Reefs 39, 467–473 (2020).

    Google Scholar 

  • 82.

    Horinouchi, M. Review of the effects of within-patch scale structural complexity on seagrass fishes. J. Exp. Mar. Biol. Ecol. 350, 111–129 (2007).

    Google Scholar 

  • 83.

    Chacin, D. H. & Stallings, C. D. Disentangling fine- and broad- scale effects of habitat on predator-prey interactions. J. Exp. Mar. Biol. Ecol. 483, 10–19 (2016).

    Google Scholar 

  • 84.

    Orth, R. J., Heck, K. L. & Vanmontfrans, J. Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7, 339–350 (1984).

    Google Scholar 

  • 85.

    Heck, K. L. & Crowder, L. B. Habitat structure and predator–prey interactions in vegetated aquatic systems. In Habitat Complexity: The Physical Arrangement of Objects in Space (eds Bell, S. S. et al.) 280–299 (Chapman and Hall, New York, 1991).

    Google Scholar 

  • 86.

    Johnson, D. W. Predation, habitat complexity, and variation in density-dependent mortality of temperate reef fishes. Ecology 87, 1179–1188 (2006).

    PubMed  Google Scholar 

  • 87.

    Gregor, C. A. & Anderson, T. W. Relative importance of habitat attributes to predation risk in a temperate reef fish. Environ. Biol. Fish. 99, 539–556 (2016).

    Google Scholar 

  • 88.

    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).

    ADS  CAS  PubMed  Google Scholar 

  • 89.

    Hortal, J., Triantis, K. A., Meiri, S., Thebault, E. & Sfenthourakis, S. Island species richness increases with habitat diversity. Am. Nat. 174, 205–217 (2009).

    Google Scholar 

  • 90.

    Genner, M. J., Turner, G. F. & Hawkins, S. J. Foraging of rocky habitat cichlid fishes in Lake Malawi: co-existence through niche partitioning?. Oecologia 121, 283–292 (1999).

    ADS  PubMed  Google Scholar 

  • 91.

    Arrizabalaga-Escudero, A. et al. Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding. Mol. Ecol. 27, 1273–1283 (2018).

    PubMed  Google Scholar 

  • 92.

    Wilson, S. & Bellwood, D. R. Cryptic dietary components of territorial damselfishes (Pomacentridae, Labroidei). Mar. Ecol. Prog. Ser. 153, 299–310 (1997).

    ADS  CAS  Google Scholar 

  • 93.

    Horn, M. H. Biology of marine herbivorous fishes. Oceanog. Mar. Biol. Ann. Rev. 27, 167–272 (1989).

    Google Scholar 

  • 94.

    Arnold, G. W., Maller, R. A. & Litchfield, R. Comparison of bird populations in remnants of Wandoo woodland and in adjacent farmland. Aust. Wildl. Res. 14, 331–341. https://doi.org/10.1071/WR9870331 (1987).

    Article  Google Scholar 

  • 95.

    Bretagnolle, V. et al. Towards sustainable and multifunctional agriculture in farmland landscapes: lessons from the integrative approach of a French LTSER platform. Sci. Total Environ. 627, 822–834 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 96.

    Carcamo, H. A., Niemala, J. K. & Spence, J. R. Farming and ground beetles – effects of agronomic practice on populations and community structure. Can. Entomol. 127, 123–140 (1995).

    Google Scholar 

  • 97.

    Locham, A. G., Kaunda-Arara, B., Wakibia, J. G. & Muya, S. Diet and niche breadth variation in the marbled parrotfish, Leptoscarus vaigiensis, among coral reef sites in Kenya. Afr. J. Ecol. 53, 560–571 (2015).

    Google Scholar 

  • 98.

    Fox, R. J. & Bellwood, D. R. Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus (f:Siganidae) on an inner-shelf reef of the Great Barrier Reef. Coral Reefs 27, 605–615 (2008).

    ADS  Google Scholar 

  • 99.

    Hoey, A. S. & Bellwood, D. R. Limited functional redundancy in a high diversity system: single species dominates key ecological process on coral reefs. Ecosystems 12, 1316–1328 (2009).

    Google Scholar 

  • 100.

    Öhman, M. C. & Rajasuriya, A. Relationships between habitat structure and fish assemblages on coral and sandstone reefs. Environ. Biol. Fish. 53, 19–31 (1998).

    Google Scholar 

  • 101.

    Gratwicke, B. & Speight, M. R. Effects of habitat complexity on Caribbean marine fish assemblages. Mar. Ecol. Prog. Ser. 292, 301–310 (2005).

    ADS  Google Scholar 

  • 102.

    Humphries, P., Potter, I. C. & Loneragan, N. R. The fish community in the shallows of a temperate Australian estuary: relationships with the aquatic marcophyte Ruppia megacarpa and environmental variables. Estuar. Coast. Shelf Sci. 34, 32–346 (1992).

    Google Scholar 

  • 103.

    Nelson, W. G. Development of an epiphyte indicator of nutrient enrichment: a critical evaluation of observational and experimental studies. Ecol. Indic. 79, 207–227 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 104.

    Gullström, M., Berkström, C., Öhman, M., Bodin, M. & Dahlberg, M. Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape. Mar. Biol. 158, 1483–1495 (2011).

    Google Scholar 

  • 105.

    Vonk, J. A., Marjolijin, J. A. & Stapel, J. Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuar. Coast. Shelf. Sci. 79, 653–660 (2008).

    ADS  Google Scholar 

  • 106.

    Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Eco. Envir. 75, 13–30 (1999).

    Google Scholar 

  • 107.

    Hoey, A. S. & Bellwood, D. R. Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29, 499–508 (2010).

    ADS  Google Scholar 

  • 108.

    Chong-Seng, K. M., Nash, K. L., Bellwood, D. R. & Graham, N. A. J. Macroalgal herbivory on recovering versus degrading coral reefs. Coral Reefs 33, 409–419 (2014).

    ADS  Google Scholar 

  • 109.

    Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs. Ecol. Lett. 14, 267–273 (2011).

    PubMed  Google Scholar 

  • 110.

    Bauman, A. G. et al. Fear effects associated with predator presence and habitat structure interact to alter herbivory on coral reefs. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0409 (2019).

    Article  PubMed  Google Scholar 

  • 111.

    Menge, B. A. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol. Monog. 46, 355–393 (1976).

    Google Scholar 

  • 112.

    Siriwardena, G. M. Trends in the abundance of farmland birds: a quantitative comparison of smoothed Common Birds Census indices. J. Appl. Ecol. 35, 24–43 (1998).

    Google Scholar 

  • 113.

    Krebs, J. R., Wilson, J. D., Bradbury, R. B. & Siriwardena, G. M. The second Silent Spring. Nature 400, 611–612 (1999).

    ADS  CAS  Google Scholar 

  • 114.

    Heikkinen, R. K., Luoto, M., Virkkala, R. & Rainio, K. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural-forest mosaic. J. Appl. Ecol. 41, 824–835 (2004).

    Google Scholar 

  • 115.

    Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeol. 14, 213–221 (2005).

    Google Scholar 

  • 116.

    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).

    Google Scholar 

  • 117.

    Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 18, 3087–3093. https://doi.org/10.1016/j.cub.2019.07.041 (2019).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Novel gas-capture approach advances nuclear fuel management

    Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses