in

An unexpectedly large count of trees in the West African Sahara and Sahel

  • 1.

    Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A. & Ouédraogo, S. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 6, 28–34 (2014).

    Article  Google Scholar 

  • 2.

    Stringer, L. C. et al. Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environ. Sci. Policy 19–20, 121–135 (2012).

    Article  Google Scholar 

  • 3.

    Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monit. Assess. 187, 600 (2015).

    Article  Google Scholar 

  • 4.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Darkoh, M. B. K. The nature, causes and consequences of desertification in the drylands of Africa. Land Degrad. Dev. 9, 1–20 (1998).

    Article  Google Scholar 

  • 6.

    Ribot, J. C. A history of fear: imagining deforestation in the West African dryland forests. Glob. Ecol. Biogeogr. 8, 291–300 (1999).

    Article  Google Scholar 

  • 7.

    Fairhead, J. & Leach, M. False forest history, complicit social analysis: rethinking some West African environmental narratives. World Dev. 23, 1023–1035 (1995).

    Article  Google Scholar 

  • 8.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Ickowitz, A., Powell, B., Salim, M. A. & Sunderland, T. C. H. Dietary quality and tree cover in Africa. Glob. Environ. Change 24, 287–294 (2014).

    Article  Google Scholar 

  • 10.

    Baudron, F., Chavarría, J. Y. D., Remans, R., Yang, K. & Sunderland, T. Indirect contributions of forests to dietary diversity in Southern Ethiopia. Ecol. Soc. 22, 28 (2017).

    Article  Google Scholar 

  • 11.

    Angelsen, A. et al. Environmental income and rural livelihoods: a global-comparative analysis. World Dev. 64, S12–S28 (2014).

    Article  PubMed  Google Scholar 

  • 12.

    Reed, J. et al. Trees for life: the ecosystem service contribution of trees to food production and livelihoods in the tropics. For. Policy Econ. 84, 62–71 (2017).

    Article  Google Scholar 

  • 13.

    Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. Camb. Philos. Soc. 89, 215–231 (2014).

    Article  PubMed  Google Scholar 

  • 14.

    Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).

    Article  PubMed  Google Scholar 

  • 15.

    de Foresta, H. et al. Towards the Assessment of Trees Outside Forests (Resources Assessment Working Paper 183) (FAO, 2013).

  • 16.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 17.

    Axelsson, C. R. & Hanan, N. P. Patterns in woody vegetation structure across African savannas. Biogeosciences 14, 3239–3252 (2017).

    ADS  Article  Google Scholar 

  • 18.

    Schepaschenko, D. et al. Comment on “The extent of forest in dryland biomes”. Science 358, eaao0166 (2017).

    Article  PubMed  Google Scholar 

  • 19.

    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 20.

    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 21.

    Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 22.

    Brandt, M. et al. Woody plant cover estimation in drylands from Earth observation based seasonal metrics. Remote Sens. Environ. 172, 28–38 (2016).

    ADS  Article  Google Scholar 

  • 23.

    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Ronneberger, O., Fischer P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds. Navab, N. et al.) 234–241, (Springer, 2015).

  • 25.

    Muller-Landau, H. C. et al. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589–602 (2006).

    Article  Google Scholar 

  • 26.

    Buchhorn, M. et al. Copernicus global land service: land cover 100 m: epoch 2018: Africa demo. https://land.copernicus.eu/global/products/lc (2019).

  • 27.

    Wood, S. A. & Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 266, 100–108 (2018).

    CAS  Article  Google Scholar 

  • 28.

    Sandbrook, C., Sunderland, T., & Tu, T. N. in Forests and Food (eds Bhaskar, V. et al.) 73–136 (Open Book, 2015).

  • 29.

    Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, eaat2853 (2018).

    ADS  Article  PubMed  Google Scholar 

  • 30.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 31.

    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    ADS  Article  Google Scholar 

  • 32.

    LeCun, Y. et al. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems 2 (ed. Touretzky, D. S.) 396–404 (Neural Information Processing Systems Foundation, 1990).

  • 33.

    Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Bischof, H. et al.) 3431–3440 (IEEE Computer Society, 2015).

  • 34.

    Sermanet, P. et al. OverFeat: integrated recognition, localization and detection using convolutional networks. Preprint at https://arxiv.org/abs/1312.6229 (2014).

  • 35.

    Cordts, M. et al. The cityscapes dataset for semantic urban scene understanding. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds Bajcsy, R. et al.) 3213–3223 (IEEE Computer Society, 2016).

  • 36.

    Simpson, A. L. et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. Preprint at https://arxiv.org/abs/1902.09063 (2019).

  • 37.

    Perslev, M., Dam, E., Pai, A. & Igel, C. One network to segment them all: a general, lightweight system for accurate 3D medical image segmentation. In Medical Image Computing and Computer Assisted Intervention (MICCAI) (eds Shen, D. et al.) 30–38 (Springer, 2019).

  • 38.

    Koch, T., Perslev, M., Igel, C. & Brandt, S. Accurate segmentation of dental panoramic radiographs with U-nets. In Proc. IEEE International Symposium on Biomedical Imaging (ISBI) (eds Davis, L. et al.) 15–19 (IEEE Computer Society, 2019).

  • 39.

    Srivastava, N. et al. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    MathSciNet  MATH  Google Scholar 

  • 40.

    Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In International Conference on Machine Learning (ICML) (eds Bach, F. & Blei, D.) 448–456 (PMLR, 2015).

  • 41.

    Odena, A., Dumoulin, V. & Olah, C. Deconvolution and checkerboard artifacts. Distill https://distill.pub/2016/deconv-checkerboard/ (2016).

  • 42.

    Sadegh, S., Salehi, M., Erdogmus, D. & Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging (eds Wang, Q. et al.) 379–387 (Springer, 2017).

  • 43.

    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).

    Article  PubMed  Google Scholar 

  • 44.

    Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLoS ONE 10, e0125814 (2015).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air