in

Aquaculture at the crossroads of global warming and antimicrobial resistance

  • 1.

    UN. The Sustainable Development Goals Report. (United Nations, New York, 2018).

  • 2.

    Robinson, T. P. & Pozzi, F. Mapping Supply and Demand for Animal-Source Foods to 2030, Animal Production Health Working Paper (Food Agric Org, Rome N° 164, 2011).

  • 3.

    Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. PNAS 112, 6902–6907 (2015).

  • 4.

    FAO. The Future of Food and Agriculture – Trends and Challenges. (Rome, 2017).

  • 5.

    Herrero, M. et al. Livestock and the environment: what have we learned in the past decade? Annu. Rev. Environ. Resour. 40, 177–202 (2015).

    • Article
    • Google Scholar
  • 6.

    Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. PNAS 112, 5649–5654 (2015).

  • 7.

    Schar, D., Sommanustweechai, A., Laxminarayan, R. & Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: optimizing use and addressing antimicrobial resistance. PLoS Med. 15, e1002521 (2018).

  • 8.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

  • 9.

    Thilsted, S. H. et al. Sustaining healthy diets: the role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61, 126–131 (2016).

    • Article
    • Google Scholar
  • 10.

    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

  • 11.

    World Bank. Fish to 2030: Prospects for Fisheries and Aquaculture (English). Agriculture and Environmental Services Discussion Paper; No. 3 (World Bank Group, Washington DC, 2013).

  • 12.

    FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals (Rome, 2018).

  • 13.

    Béné, C. et al. Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev. 79, 177–196 (2016).

    • Article
    • Google Scholar
  • 14.

    Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Sec. 16, 85–92 (2018).

    • Article
    • Google Scholar
  • 15.

    Marcos-López, M., Gale, P., Oidtmann, B. C. & Peeler, E. J. Assessing the impact of climate change on disease emergence in freshwater fish in the United Kingdom. Transbound. Emerg. Dis. 57, 293–304 (2010).

  • 16.

    Karvonen, A., Rintamäki, P., Jokela, J. & Valtonen, E. T. Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. Int. J. Parasitol. 40, 1483–1488 (2010).

  • 17.

    Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl Acad. Sci. USA 113, E5062–E5071 (2015).

  • 18.

    Bondad-Reantaso & Melba. Acute hepatopancreatic necrosis disease (AHPND) of penaeid shrimps: Global perspective. SEAFDEC http://hdl.handle.net/10862/3084 (2016)

  • 19.

    FAO. Impacts on Climate Change on Fisheries and Aquaculture – Synthesis on Current Knowledge, Adaptation and Mitigation Options (Rome, 2018).

  • 20.

    Mohanty, B. R. & Sahoo, P. K. Edwardsiellosis in fish: a brief review. J. Biosci. 32, 1331–1344 (2007).

  • 21.

    Kayansamruaj, P., Pirarat, N., Hirono, I. & Rodkhum, C. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet. Microbiol. 172, 265–271 (2014).

  • 22.

    Bontad-Reantaso, M. G. Acute hepatopancreatic necrosis disease (AHND) of penaeid shrimps: Global perspective. Global perspective. In R. V. Pakingking Jr, E. G. T. de Jesus-Ayson, & B. O. Acosta (Eds.), Addressing Acute Hepatopancreatic Necrosis Disease (AHPND) and Other Transboundary Diseases for Improved Aquatic Animal Health in Southeast Asia: Proceedings of the ASEAN Regional Technical Consultation on EMS/AHPND and Other Transboundary Disease for Improved Aquatic Animal Health in Southeast Asia, 22-24 February 2016, Makati City, Philippines (pp. 16-23) (Aquaculture Department, Southeast Asian Fisheries Development Center, Tigbauan, Iloilo, Philippines, 2016).

  • 23.

    Cabello, F. C., Godfrey, H. P., Buschmann, A. H. & Dölz, H. J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16, e127–e133 (2016).

  • 24.

    CDC. Antibiotic Resistance Threats in the United States, 2019 (U.S. Department of Health and Human Services, CDC, Atlanta, GA, 2019).

  • 25.

    Cassini, A. et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 19, 56–66 (2019).

  • 26.

    Su, H. et al. Occurrence and temporal variation of antibiotic resistance genes (ARGs) in shrimp aquaculture: ARGs dissemination from farming source to reared organisms. Sci. Total Environ. 607–608, 357–366 (2017).

  • 27.

    Jang, H. M. et al. Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. Environ. Pollut. 233, 1049–1057 (2018).

  • 28.

    Miranda, C. D., Godoy, F. A. & Lee, M. R. Current status of the use of antibiotics and the antimicrobial resistance in the Chilean salmon farms. Front Microbiol 9, 1284 (2018).

  • 29.

    Marti, E., Variatza, E. & Balcazar, J. L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22, 36–41 (2014).

  • 30.

    Seiler, C. & Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol 3, 399 (2012).

  • 31.

    Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics 16, 964 (2015).

  • 32.

    Lin, C. K. Prawn culture in Taiwan: what went wrong. World Aquacult. Soc. 20, 19–20 (1989).

    • Google Scholar
  • 33.

    Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765 (2017).

  • 34.

    Azzam, M. I., Ezzat, S. M., Othman, B. A. & El-Dougdoug, K. A. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci. 31, 109–121 (2017).

    • Article
    • Google Scholar
  • 35.

    MacFadden, D. R., McGough, S. F., Fisman, D., Santillana, M. & Brownstein, J. S. Antibiotic resistance increases with local temperature. Nat. Clim. Chang 8, 510 (2018).

  • 36.

    Krumperman, P. H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol 46, 165–170 (1983).

  • 37.

    The Center for Disease Dynamics Economics & Policy. ResistanceMap: Antibiotic resistance. https://resistancemap.cddep.org/AntibioticResistance.php (2018).

  • 38.

    The Center for Disease Dynamics Economics & Policy. ResistanceMap: Antibiotic use. https://resistancemap.cddep.org/AntibioticUse.php (2018).

  • 39.

    Paun, A., Acton, L. & Chan, W. S. Fragile Planet. Scoring Climate Risks Around the World (HSBC Global Research, 2018).

  • 40.

    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

  • 41.

    Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- and middle- income countries. Science 365, 1266 (2019).

    • Google Scholar
  • 42.

    Nadimpalli, M. et al. Combating global antibiotic resistance: emerging one health concerns in lower- and middle-income countries. Clin. Infect. Dis. 66, 963–969 (2018).

  • 43.

    Collingon, P., Beggs, J. P., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariate analysis. Lan. Plan. Health 2, e398–e405 (2018).

  • 44.

    Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).

  • 45.

    Ashrafi, R. et al. Broad thermal tolerance is negatively correlated with virulence in an opportunistic bacterial pathogen. Evol. Appl 11, 1700–1714 (2018).

  • 46.

    Dittmar, J., Janssen, H., Kuske, A., Kurtz, J. & Scharsack, J. P. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus). J. Anim. Ecol. 83, 744–757 (2014).

  • 47.

    O’Gorman, E. J. et al. Temperature effects on fish production across a natural thermal gradient. Glob. Chang. Biol. 22, 3206–3322 (2016).

  • 48.

    Leung, T. L. F. & Bates, A. E. More rapid and severe disease outbreaks for aquaculture at the tropics: implications for food security. J. Appl. Ecol. 50, 215–222 (2013).

    • Article
    • Google Scholar
  • 49.

    Redshaw, C. H., Stahl-Timmins, W. M., Fleming, L. E., Davidson, I. & Depledge, M. H. Potential changes in disease patterns and pharmaceutical use in response to climate change. J. Toxicol. Environ. Health B Crit. Rev. 16, 285–320 (2013).

  • 50.

    Interagency Coordination Group on Antimicrobial Resistance (IACG). No time to wait: securing the future from drug-resistant infections (2019).

  • 51.

    European Council, 2001a Directive 2001/82/EC of the European Parliament and of the Council of 6th November 2001 on the Community code relating to veterinary medicinal products. Off. J. Eur. Community L-311, 1–66 (2004).

  • 52.

    Henriksson, P. J. G., Troell, M. & Rico, A. Antimicrobial use in aquaculture: some complementing facts. Proc. Natl Acad. Sci. USA 112, E3317 (2015).

  • 53.

    Rico, A. et al. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture 412-413, 231–243 (2013).

  • 54.

    Shariff, M., Nagaraj, G., Chua, F. H. C. & Wang, Y. G. The use of chemicals in aquaculture in Malaysia and Singapore. Use of Chemicals in Aquaculture in Asia (edited by J. R. Arthur, C. R. Larilla-Pitogo & R. P. Subasinghe), Pp. 127–140. Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia, 20–22 May 1996, (Southeast Asian Fisheries Development Center Aquaculture Department, Tigbauan, Iloilo, Philippines, 2000).

  • 55.

    Bondad-Reantaso, M. G., Arthur, J. R. & Subasinghe, R. P., eds. Improving Biosecurity through Prudent and Responsible Use of Veterinary Medicines in Aquatic Food Production. FAO Fisheries and Aquaculture Technical Paper. No. 547. Rome, FAO. 207 pp (2012).

  • 56.

    Liu, X., Steele, J. C. & Meng, X. Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environ. Pollut. 223, 161–169 (2017).

  • 57.

    Samuelsen, O. B., Torsvik, V. & Evik, A. Long-range change in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Sci. Tot. Env 114, 25–36 (1992).

  • 58.

    Tamminem, M. et al. Tetracycline resistance genes persist at aquaculture farms in the absence of selection pressure. Environ. Sci. Technol. 45, 386–391 (2011).

  • 59.

    Hatosy, S. M. & Martiny, A. C. The Ocean as a global reservoir of antibiotic resistance genes. Appl. Environ. Microbiol. 81, 7593–7599 (2015).

  • 60.

    Bentzon‐Tilia, M., Sonnenschein, E. C. & Gram, L. Monitoring and managing microbes in aquaculture – Towards a sustainable industry. Micro. Biotechnol. 9, 576–584 (2016).

    • Article
    • Google Scholar
  • 61.

    Aubin, J. et al. Implementing ecological intensification in fish farming: definition and principles from contrasting experiences. Rev. Aquacult 11, 149–167 (2019).

    • Article
    • Google Scholar
  • 62.

    Meek, R. W., Vyas, H. & Piddock, L. J. V. Nonmedical uses of antibiotics: time to restrict their use? PLoS Biol. 13, e1002266 (2015).

  • 63.

    Petersen, A., Andersen, J. S., Kaewmak, T., Somsiri, T. & Dalsgaard, A. Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl. Environ. Microbiol. 68, 6036–6042 (2002).

  • 64.

    Ahmed, N., Bunting, S. W., Rahman, S. & Garforth, C. J. Community-based climate change adaptation strategies for integrated prawn–fish–rice farming in Bangladesh to promote social-ecological resilience. Rev. Aquacult 6, 20–35 (2014).

    • Article
    • Google Scholar
  • 65.

    Shifflett, S. D., Culbreth, A., Hazel, D., Daniels, H. & Nichols, E. G. Coupling aquaculture with forest plantations for food, energy, and water resiliency. Sci. Total. Environ. 571, 1262–1270 (2016).

  • 66.

    Brudeseth, B. E. et al. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish. Shellfish Immunol. 35, 1759–1768 (2013).

  • 67.

    Reverter, M., Bontemps, N., Lecchini, D., Banaigs, B. & Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: current status and future perspectives. Aquaculture 433, 50–61 (2014).

    • Article
    • Google Scholar
  • 68.

    Hoseinifar, S. H., Sun, Y. Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).

  • 69.

    Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. PNAS 106, 15103–15110 (2009).

  • 70.

    Caruso, D. et al. Traditional pharmacopeia in small scale freshwater farmers in West Java, Indonesia: an ethnoveterinary approach. Aquaculture 416-417, 334–345 (2013).

    • Article
    • Google Scholar
  • 71.

    Caruso, D. et al. Herbal therapy in small-scale aquaculture: an ethnobotanic approach in North Vietnam and Central Java, Indonesia. In: 9th Symposium on Diseases in Asian Aquaculture (DAA9), 24-28 November 2014, (Ho Chi Minh City, 2014).

  • 72.

    Tang, K. L. et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: a systematic review and meta-analysis. Lancet Planet. Health 1, e316–e327 (2017).

  • 73.

    Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. The PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

  • 74.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

  • 75.

    Arnold, T. W. Uninformative parameters and using Akaike’s Information Criterion. J. Wildlife Manag. 74, 1175–1178 (2010).


  • Source: Ecology - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes