in

Arctic freshwater fish productivity and colonization increase with climate warming

  • 1.

    Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Change 7, 875–879 (2017).

    • Article
    • Google Scholar
  • 2.

    Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds H.-O. Pörtner et al) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).

  • 3.

    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

  • 4.

    Beaugrand, G. A. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).

    • Article
    • Google Scholar
  • 5.

    Forcada, J., Trathan, P. N. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).

    • Google Scholar
  • 6.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    • Article
    • Google Scholar
  • 7.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).

  • 8.

    Wessely, J. et al. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss. Nat. Clim. Change 7, 823–827 (2017).

    • Article
    • Google Scholar
  • 9.

    Ryder, R. A. The Morphoedaphic Index—use, abuse and fundamental concepts. Trans. Am. Fish. Soc. 111, 154–164 (1982).

    • Article
    • Google Scholar
  • 10.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Comm. 7, 13603 (2016).

  • 11.

    Campana, S. E., Casselman, J. M. & Jones, C. M. Bomb radiocarbon chronologies in the Arctic, with implications for the age validation of lake trout (Salvelinus namaycush) and other Arctic species. Can. J. Fish. Aquat. Sci. 65, 733–743 (2008).

    • Article
    • Google Scholar
  • 12.

    Shuter, B. J., Jones, M. L., Korver, R. M. & Lester, N. P. A general, life history based model for regional management of fish stocks: the inland lake trout (Salvelinus namaycush) fisheries of Ontario. Can. J. Fish. Aquat. Sci. 55, 2161–2177 (1998).

    • Article
    • Google Scholar
  • 13.

    Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).

    • Article
    • Google Scholar
  • 14.

    Casselman, J. M., Jones, C. M. & Campana, S. E. Bomb radiocarbon age validation for the long-lived, unexploited Arctic fish species Coregonus clupeaformis. Mar. Freshwat. Res. 70, 1–8 (2019).

    • Article
    • Google Scholar
  • 15.

    Lester, N. P., Shuter, B. J. & Abrams, P. A. Interpreting the von Bertalanffy model of somatic growth in fish: the cost of reproduction. Proc. R. Soc. Ser. B 271, 1625–1631 (2004).

  • 16.

    Minte-Vera, C. V., Maunder, M. N., Casselman, J. M. & Campana, S. E. Growth functions that incorporate the cost of reproduction. Fish. Res. 180, 31–44 (2016).

    • Article
    • Google Scholar
  • 17.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013)

  • 18.

    Climate Change 2014: Synthesis Report (eds Pachauri, R. K. and Meyer, L. A.) (IPCC, Cambridge Univ. Press, 2014).

  • 19.

    Islam, D. & Berkes, F. Indigenous peoples’ fisheries and food security: a case from northern Canada. Food Secur. 8, 815–826 (2016).

    • Article
    • Google Scholar
  • 20.

    Musick, J. A. Ecology and conservation of long-lived marine animals. Am. Fish. Soc. Symp. 23, 1–10 (1999).

    • Google Scholar
  • 21.

    Schloss, C. A., Nunez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

  • 22.

    Hirsch, P. E., N’Guyen, A., Muller, R., Adrian‐Kalchhauser, I. & Burkhardt‐Holm, P. Colonizing Islands of water on dry land—on the passive dispersal of fish eggs by birds. Fish. Fish. 19, 502–510 (2018).

    • Article
    • Google Scholar
  • 23.

    Spens, J., Englund, G. & Lundqvist, H. Network connectivity and dispersal barriers: using geographical information system (GIS) tools to predict landscape scale distribution of a key predator (Esox lucius) among lakes. J. Appl. Ecol. 44, 1127–1137 (2007).

    • Article
    • Google Scholar
  • 24.

    Swanson, H. K. et al. Anadromy in Arctic populations of lake trout (Salvelinus namaycush): otolith microchemistry, stable isotopes, and comparisons with Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 67, 842–853 (2010).

  • 25.

    Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).

    • Article
    • Google Scholar
  • 26.

    Wilson, K. L., De Gisi, J., Cahill, C. L., Barker, O. E. & Post, J. R. Life‐history variation along environmental and harvest clines of a northern freshwater fish: plasticity and adaptation. J. Anim. Ecol. 88, 717–733 (2019).

    • Article
    • Google Scholar
  • 27.

    Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. R. Soc. B 368, 20120482 (2013).

    • Article
    • Google Scholar
  • 28.

    Thomas, C. D. Climate, climate change and range boundaries. Diversity Distrib. 16, 488–495 (2010).

    • Article
    • Google Scholar
  • 29.

    Healey, M. C. The dynamics of exploited lake trout populations and implications for management. J. Wildl. Manag. 42, 307–328 (1978).

    • Article
    • Google Scholar
  • 30.

    Burr, J. M. Growth, density and biomass of lake trout in Arctic and Subarctic Alaska. Am. Fish. Soc. Symp. 19, 109–118 (1997).

    • Google Scholar
  • 31.

    Mills, K. H., Dyck, M. & Harwood, L. A. Proceedings of the second lake trout symposium 2005, Yellowknife, Northwest territories. Can. Tech. Rep. Fish. Aquat. Sci. 2778, 247 (2008).

    • Google Scholar
  • 32.

    Hollister, J. W., Milstead, W. B. & Urrutia, M. A. Predicting maximum lake depth from surrounding topography. PLoS ONE 6, e25764 (2011).

  • 33.

    Livingstone, D. M., Lotter, A. F. & Walker, I. R. The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct. Antarct. Alp. Res. 31, 341–352 (1999).

    • Article
    • Google Scholar
  • 34.

    Shuter, B. J., Schlesinger, D. A. & Zimmerman, A. P. Empirical predictors of annual surface water temperature cycles in North American lakes. Can. J. Fish. Aquat. Sci. 40, 1838–1845 (1983).

    • Article
    • Google Scholar
  • 35.

    Da Fang, X. & Stefan, H. G. Long-term lake water temperature and ice cover simulations/measurements. Cold Reg. Sci. Technol. 24, 289–304 (1996).

    • Article
    • Google Scholar
  • 36.

    Campana, S. E. Physical Characteristics of 55 Canadian Arctic Lake Trout Lakes (Knowledge Network for Biocomplexity archive, 2020); https://doi.org/10.5063/F1ZP44F1

  • 37.

    Campana, S. E. Lake Trout Population Characteristics in 55 Canadian Arctic Reference Lakes (Knowledge Network for Biocomplexity, 2020); https://doi.org/10.5063/F1TX3CPV.

  • 38.

    Samarasin, P., Minns, C. K., Shuter, B. J., Tonn, W. M. & Rennie, M. D. Fish diversity and biomass in northern Canadian lakes: northern lakes are more diverse and have greater biomass than expected based on species–energy theory. Can. J. Fish. Aquat. Sci. 72, 226–237 (2015).

    • Article
    • Google Scholar
  • 39.

    Campana, S. E., Valentin, A. E., MacLellan, S. E. & Groot, J. B. Image-enhanced burnt otoliths, bomb radiocarbon and the growth dynamics of redfish (Sebastes mentella and S. fasciatus) off the eastern coast of Canada. Mar. Freshw. Res. 67, 925–936 (2016).

    • Article
    • Google Scholar
  • 40.

    Francis, R. I. C. C. Growth in age-structured stock assessment models. Fish. Res. 180, 113–118 (2015).

    • Article
    • Google Scholar
  • 41.

    Smith, M. W. et al. Recommendations for catch-curve analysis. North Am. J. Fish. Managem. 32, 956–967 (2012).

    • Article
    • Google Scholar
  • 42.

    Ricker, W. E. Computation and Interpretation of Biological Statistics of Fish Populations (Bulletin of the Fisheries Research Board of Canada, 1975).

  • 43.

    Deriso, R. B. Optimal F 0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44, 339–348 (1987).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes