
Huang, J. et al. Recently amplified arctic warming has contributed to a continual global warming trend. Nat. Clim. Change 7, 875–879 (2017).
Meredith, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds H.-O. Pörtner et al) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).
Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).
Beaugrand, G. A. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).
Forcada, J., Trathan, P. N. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Change Biol. 14, 2473–2488 (2008).
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).
Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).
Wessely, J. et al. Habitat-based conservation strategies cannot compensate for climate-change-induced range loss. Nat. Clim. Change 7, 823–827 (2017).
Ryder, R. A. The Morphoedaphic Index—use, abuse and fundamental concepts. Trans. Am. Fish. Soc. 111, 154–164 (1982).
Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Comm. 7, 13603 (2016).
Campana, S. E., Casselman, J. M. & Jones, C. M. Bomb radiocarbon chronologies in the Arctic, with implications for the age validation of lake trout (Salvelinus namaycush) and other Arctic species. Can. J. Fish. Aquat. Sci. 65, 733–743 (2008).
Shuter, B. J., Jones, M. L., Korver, R. M. & Lester, N. P. A general, life history based model for regional management of fish stocks: the inland lake trout (Salvelinus namaycush) fisheries of Ontario. Can. J. Fish. Aquat. Sci. 55, 2161–2177 (1998).
Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).
Casselman, J. M., Jones, C. M. & Campana, S. E. Bomb radiocarbon age validation for the long-lived, unexploited Arctic fish species Coregonus clupeaformis. Mar. Freshwat. Res. 70, 1–8 (2019).
Lester, N. P., Shuter, B. J. & Abrams, P. A. Interpreting the von Bertalanffy model of somatic growth in fish: the cost of reproduction. Proc. R. Soc. Ser. B 271, 1625–1631 (2004).
Minte-Vera, C. V., Maunder, M. N., Casselman, J. M. & Campana, S. E. Growth functions that incorporate the cost of reproduction. Fish. Res. 180, 31–44 (2016).
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013)
Climate Change 2014: Synthesis Report (eds Pachauri, R. K. and Meyer, L. A.) (IPCC, Cambridge Univ. Press, 2014).
Islam, D. & Berkes, F. Indigenous peoples’ fisheries and food security: a case from northern Canada. Food Secur. 8, 815–826 (2016).
Musick, J. A. Ecology and conservation of long-lived marine animals. Am. Fish. Soc. Symp. 23, 1–10 (1999).
Schloss, C. A., Nunez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).
Hirsch, P. E., N’Guyen, A., Muller, R., Adrian‐Kalchhauser, I. & Burkhardt‐Holm, P. Colonizing Islands of water on dry land—on the passive dispersal of fish eggs by birds. Fish. Fish. 19, 502–510 (2018).
Spens, J., Englund, G. & Lundqvist, H. Network connectivity and dispersal barriers: using geographical information system (GIS) tools to predict landscape scale distribution of a key predator (Esox lucius) among lakes. J. Appl. Ecol. 44, 1127–1137 (2007).
Swanson, H. K. et al. Anadromy in Arctic populations of lake trout (Salvelinus namaycush): otolith microchemistry, stable isotopes, and comparisons with Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 67, 842–853 (2010).
Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).
Wilson, K. L., De Gisi, J., Cahill, C. L., Barker, O. E. & Post, J. R. Life‐history variation along environmental and harvest clines of a northern freshwater fish: plasticity and adaptation. J. Anim. Ecol. 88, 717–733 (2019).
Gauthier, G. et al. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philos. Trans. R. Soc. B 368, 20120482 (2013).
Thomas, C. D. Climate, climate change and range boundaries. Diversity Distrib. 16, 488–495 (2010).
Healey, M. C. The dynamics of exploited lake trout populations and implications for management. J. Wildl. Manag. 42, 307–328 (1978).
Burr, J. M. Growth, density and biomass of lake trout in Arctic and Subarctic Alaska. Am. Fish. Soc. Symp. 19, 109–118 (1997).
Mills, K. H., Dyck, M. & Harwood, L. A. Proceedings of the second lake trout symposium 2005, Yellowknife, Northwest territories. Can. Tech. Rep. Fish. Aquat. Sci. 2778, 247 (2008).
Hollister, J. W., Milstead, W. B. & Urrutia, M. A. Predicting maximum lake depth from surrounding topography. PLoS ONE 6, e25764 (2011).
Livingstone, D. M., Lotter, A. F. & Walker, I. R. The decrease in summer surface water temperature with altitude in Swiss alpine lakes: a comparison with air temperature lapse rates. Arct. Antarct. Alp. Res. 31, 341–352 (1999).
Shuter, B. J., Schlesinger, D. A. & Zimmerman, A. P. Empirical predictors of annual surface water temperature cycles in North American lakes. Can. J. Fish. Aquat. Sci. 40, 1838–1845 (1983).
Da Fang, X. & Stefan, H. G. Long-term lake water temperature and ice cover simulations/measurements. Cold Reg. Sci. Technol. 24, 289–304 (1996).
Campana, S. E. Physical Characteristics of 55 Canadian Arctic Lake Trout Lakes (Knowledge Network for Biocomplexity archive, 2020); https://doi.org/10.5063/F1ZP44F1
Campana, S. E. Lake Trout Population Characteristics in 55 Canadian Arctic Reference Lakes (Knowledge Network for Biocomplexity, 2020); https://doi.org/10.5063/F1TX3CPV.
Samarasin, P., Minns, C. K., Shuter, B. J., Tonn, W. M. & Rennie, M. D. Fish diversity and biomass in northern Canadian lakes: northern lakes are more diverse and have greater biomass than expected based on species–energy theory. Can. J. Fish. Aquat. Sci. 72, 226–237 (2015).
Campana, S. E., Valentin, A. E., MacLellan, S. E. & Groot, J. B. Image-enhanced burnt otoliths, bomb radiocarbon and the growth dynamics of redfish (Sebastes mentella and S. fasciatus) off the eastern coast of Canada. Mar. Freshw. Res. 67, 925–936 (2016).
Francis, R. I. C. C. Growth in age-structured stock assessment models. Fish. Res. 180, 113–118 (2015).
Smith, M. W. et al. Recommendations for catch-curve analysis. North Am. J. Fish. Managem. 32, 956–967 (2012).
Ricker, W. E. Computation and Interpretation of Biological Statistics of Fish Populations (Bulletin of the Fisheries Research Board of Canada, 1975).
Deriso, R. B. Optimal F 0.1 criteria and their relationship to maximum sustainable yield. Can. J. Fish. Aquat. Sci. 44, 339–348 (1987).
Source: Ecology - nature.com