in

Bacterial community analysis of floor dust and HEPA filters in air purifiers used in office rooms in ILAS, Beijing

  • 1.

    Hospodsky, D. et al. Human Occupancy as a Source of Indoor Airborne Bacteria. PLoS One 7, 10, https://doi.org/10.1371/journal.pone.0034867 (2012).

  • 2.

    Fujiyoshi, S., Tanaka, D. & Maruyama, F. Transmission of Airborne Bacteria across Built Environments and Its Measurement Standards: A Review. Frontiers in Microbiology 8, https://doi.org/10.3389/fmicb.2017.02336 (2017).

  • 3.

    Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 18, https://doi.org/10.1186/s40168-015-0108-3 (2015).

    • Article
    • Google Scholar
  • 4.

    Han, Y. et al. Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ. Pollut. 205, 307–314, https://doi.org/10.1016/j.envpol.2015.04.026 (2015).

  • 5.

    Thatcher, T. L. & Layton, D. W. DEPOSITION, RESUSPENSION, AND PENETRATION OF PARTICLES WITHIN A RESIDENCE. Atmospheric Environment 29, 1487–1497, https://doi.org/10.1016/1352-2310(95)00016-r (1995).

  • 6.

    Baek, S. O., Kim, Y. S. & Perry, R. Indoor air quality in homes, offices and restaurants in Korean urban areas – Indoor/outdoor relationships. Atmospheric Environment 31, 529–544, https://doi.org/10.1016/s1352-2310(96)00215-4 (1997).

  • 7.

    Pope, C. A. III et al. Cardiovascular Mortality and Exposure to Airborne Fine Particulate Matter and Cigarette Smoke Shape of the Exposure-Response Relationship. Circulation 120, 941–948, https://doi.org/10.1161/circulationaha.109.857888 (2009).

  • 8.

    Pope, C. A. et al. Cardiovascular mortality and long-term exposure to particulate air pollution – Epidemiological evidence of general pathophysiological pathways of disease. Circulation 109, 71–77, https://doi.org/10.1161/01.cir.0000108927.80044.7f (2004).

    • Article
    • Google Scholar
  • 9.

    Zhang, Q. L., Qiu, Z. M., Chung, K. F. & Huang, S. K. Link between environmental air pollution and allergic asthma: East meets West. Journal of Thoracic Disease 7, 14–22, https://doi.org/10.3978/j.issn.2072-1439.2014.12.07 (2015).

  • 10.

    Pope, C. A. III et al. Lung Cancer and Cardiovascular Disease Mortality Associated with Ambient Air Pollution and Cigarette Smoke: Shape of the Exposure-Response Relationships. Environmental Health Perspectives 119, 1616–1621, https://doi.org/10.1289/ehp.1103639 (2011).

  • 11.

    Lepeule, J., Laden, F., Dockery, D. & Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environmental Health Perspectives 120, 965–970, https://doi.org/10.1289/ehp.1104660 (2012).

  • 12.

    Zhao, J. H. et al. Spatiotemporal Trend Analysis of PM2.5 Concentration in China, 1999-2016. Atmosphere 10, https://doi.org/10.3390/atmos10080461 (2019).

  • 13.

    Guan, W. J., Zheng, X. Y., Chung, K. F. & Zhong, N. S. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388, 1939–1951, https://doi.org/10.1016/S0140-6736(16)31597-5 (2016).

  • 14.

    Peck, R. L. et al. Efficiency of portable HEPA air purifiers against traffic related combustion particles. 98, 21–29 (2016).

  • 15.

    Casas, L. et al. Endotoxin, extracellular polysaccharides, and (1-3)-glucan concentrations in dust and their determinants in four European birth cohorts: results from the HITEA project. Indoor air 23, 208–218, https://doi.org/10.1111/ina.12017 (2013).

  • 16.

    Sordillo, J. E., Alwis, U. K., Hoffman, E., Gold, D. R. & Milton, D. K. Home Characteristics as Predictors of Bacterial and Fungal Microbial Biomarkers in House Dust. Environmental Health Perspectives 119, 189–195, https://doi.org/10.1289/ehp.1002004 (2011).

  • 17.

    Johansson, E. et al. Streptomycetes in house dust: associations with housing characteristics and endotoxin. Indoor air 21, 300–310, https://doi.org/10.1111/j.1600-0668.2010.00702.x (2011).

  • 18.

    Frankel, M. et al. Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and Air Exchange Rate. Applied and Environmental Microbiology 78, 8289–8297, https://doi.org/10.1128/aem.02069-12 (2012).

  • 19.

    Suzuki, K. et al. Spread of varicella-zoster virus DNA to the environment from varicella patients who were treated with oral acyclovir. Pediatrics international: official journal of the Japan Pediatric Society 45, 458–460, https://doi.org/10.1046/j.1442-200x.2003.01746.x (2003).

    • Article
    • Google Scholar
  • 20.

    Maus, R., Goppelsroder, A. & Umhauer, H. Survival of bacterial and mold spores in air filter media. Atmospheric Environment 35, 105–113, https://doi.org/10.1016/s1352-2310(00)00280-6 (2001).

  • 21.

    Majchrzycka, K., Okrasa, M., Skora, J. & Gutarowska, B. Evaluation of the Survivability of Microorganisms Deposited on Filtering Respiratory Protective Devices under Varying Conditions of Humidity. International Journal of Environmental Research and Public Health 13, https://doi.org/10.3390/ijerph13010098 (2016).

  • 22.

    Gore, R. B. et al. High-efficiency particulate arrest–filter vacuum cleaners increase personal cat allergen exposure in homes with cats. Journal of Allergy and Clinical Immunology 111, 784–787, https://doi.org/10.1067/mai.2003.1378 (2003).

  • 23.

    Forthomme, A. et al. Microbial aerosol filtration: Growth and release of a bacteria-fungi consortium collected by fibrous filters in different operating conditions. Journal of Aerosol Science 72, 32–46, https://doi.org/10.1016/j.jaerosci.2014.02.004 (2014).

  • 24.

    Noris, F., Siegel, J. A. & Kinney, K. A. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmospheric Environment 45, 338–346, https://doi.org/10.1016/j.atmosenv.2010.10.017 (2011).

  • 25.

    Snider, G. et al. Variation in global chemical composition of PM2.5: emerging results from SPARTAN. Atmospheric Chemistry and Physics 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016 (2016).

  • 26.

    Li, J. et al. Differing toxicity of ambient particulate matter (PM) in global cities. Atmospheric Environment 212, 305–315, https://doi.org/10.1016/j.atmosenv.2019.05.048 (2019).

  • 27.

    Liu, Z. J. et al. Effect of environmental parameters on culturability and viability of dust accumulated fungi in different HVAC segments. Sustainable Cities and Society 48, https://doi.org/10.1016/j.scs.2019.101538 (2019).

  • 28.

    Maestre, J. P. et al. Filter forensics: microbiota recovery from residential HVAC filters. Microbiome 6, https://doi.org/10.1186/s40168-018-0407-6 (2018).

  • 29.

    Liu, Z. J., Ma, S. Y., Cao, G. Q., Meng, C. & He, B. J. Distribution characteristics, growth, reproduction and transmission modes and control strategies for microbial contamination in HVAC systems: A literature review. Energy and Buildings 177, 77–95, https://doi.org/10.1016/j.enbuild.2018.07.050 (2018).

    • Article
    • Google Scholar
  • 30.

    Liu, Z. J., Zhu, Z. Q., Zhu, Y. X., Xu, W. & Li, H. Investigation of dust loading and culturable microorganisms of HVAC systems in 24 office buildings in Beijing. Energy and Buildings 103, 166–174, https://doi.org/10.1016/j.enbuild.2015.06.056 (2015).

    • Article
    • Google Scholar
  • 31.

    Noris, F., Siegel, J. A., Kinney, K. A. & Ashrae. In Ashrae Transactions 2009, Vol 115, Pt 2 Vol. 115 ASHRAE Transactions 484-491 (2009).

  • 32.

    Golofit-Szymczak, M. & Gorny, R. L. Microbiological air quality in office buildings equipped with different ventilation systems. Indoor air 28, 792–805, https://doi.org/10.1111/ina.12495 (2018).

  • 33.

    Frankel, M., Timm, M., Hansen, E. W. & Madsen, A. M. Comparison of sampling methods for the assessment of indoor microbial exposure. Indoor air 22, 405–414, https://doi.org/10.1111/j.1600-0668.2012.00770.x (2012).

  • 34.

    Noss, I. et al. Evaluation of a low-cost electrostatic dust fall collector for indoor air endotoxin exposure assessment. Applied and Environmental Microbiology 74, 5621–5627, https://doi.org/10.1128/aem.00619-08 (2008).

  • 35.

    Kilburg-Basnyat, B., Peters, T. M., Perry, S. S. & Thorne, P. S. Electrostatic dust collectors compared to inhalable samplers for measuring endotoxin concentrations in farm homes. Indoor air 26, 724–733, https://doi.org/10.1111/ina.12243 (2016).

  • 36.

    Leppanen, H. K. et al. Quantitative assessment of microbes from samples of indoor air and dust. Journal of Exposure Science and Environmental Epidemiology 28, 231–241, https://doi.org/10.1038/jes.2017.24 (2018).

  • 37.

    Kim, Y. S. et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses. Clinical and Experimental Allergy 43, 443–454, https://doi.org/10.1111/cea.12085 (2013).

  • 38.

    Shan, Y. F., Wu, W. D., Fan, W., Haahtela, T. & Zhang, G. C. House dust microbiome and human health risks. International Microbiology 22, 297–304, https://doi.org/10.1007/s10123-019-00057-5 (2019).

  • 39.

    Sarnet, J. M. The perspective of the National Research Council’s Committee on Research Priorities for Airborne Particulate Matter. J. Toxicol. Env. Health Part A 68, 1063–1067, https://doi.org/10.1080/15287390590935905 (2005).

  • 40.

    Zhai, Y. et al. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International 113, 74–90, https://doi.org/10.1016/j.envint.2018.01.007 (2018).

  • 41.

    Dannemiller, K. C., Gent, J. F., Leaderer, B. P. & Peccia, J. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor air 26, 179–192, https://doi.org/10.1111/ina.12205 (2016).

  • 42.

    Kettleson, E. M. et al. Key determinants of the fungal and bacterial microbiomes in homes. Environmental Research 138, 130–135, https://doi.org/10.1016/j.envres.2015.02.003 (2015).

  • 43.

    Kodama, A. M. & McGee, R. I. Airborne Microbial Contaminants In Indoor Environments – Naturally Ventilated And Air-Conditioned Homes. Archives of Environmental Health 41, 306–311, https://doi.org/10.1080/00039896.1986.9936702 (1986).

  • 44.

    Amend, A. S., Seifert, K. A., Samson, R. & Bruns, T. D. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences of the United States of America 107, 13748–13753, https://doi.org/10.1073/pnas.1000454107 (2010).

  • 45.

    Kembel, S. W. et al. Architectural design influences the diversity and structure of the built environment microbiome. Isme Journal 6, 1469–1479, https://doi.org/10.1038/ismej.2011.211 (2012).

  • 46.

    Meadow, J. F. et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor air 24, 41–48, https://doi.org/10.1111/ina.12047 (2014).

  • 47.

    Kaarakainen, P. et al. Microbial content of house dust samples determined with qPCR. Science of the Total Environment 407, 4673–4680, https://doi.org/10.1016/j.scitotenv.2009.04.046 (2009).

  • 48.

    Leppanen, H. K. et al. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor air 24, 248–259, https://doi.org/10.1111/ina.12078 (2014).

  • 49.

    Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nature methods 8, 761–763, https://doi.org/10.1038/nmeth.1650 (2011).

  • 50.

    Donlan, R. M. Biofilm Formation: A Clinically Relevant Microbiological Process. Clin. Infect. Dis. 33, 1387–1392 (2001).

  • 51.

    Stetzenbach, L. D. Airborne Bacteria in Indoor Environments. (John Wiley & Sons, Inc., 2006).

  • 52.

    Leppã¤Nen, H. K. et al. Quantitative assessment of microbes from samples of indoor air and dust. 28 (2017).

  • 53.

    Maki, T. et al. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event. Sci. Total Environ. 488-489, 75–84 (2014).

  • 54.

    Smets, W., Moretti, S., Denys, S. & Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment 139, 214–221, https://doi.org/10.1016/j.atmosenv.2016.05.038 (2016).

  • 55.

    Stocks, G. W., O’Connor, D. P., Self, S. D., Marcek, G. A. & Thompson, B. L. Directed Air Flow to Reduce Airborne Particulate and Bacterial Contamination in the Surgical Field During Total Hip Arthroplasty. Journal of Arthroplasty 26, 771–776, https://doi.org/10.1016/j.arth.2010.07.001 (2011).

  • 56.

    Korves, T. M. et al. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. Indoor air 23, 50–61, https://doi.org/10.1111/j.1600-0668.2012.00787.x (2013).

  • 57.

    Pokhum, C. et al. A facile and cost-effective method for removal of indoor airborne psychrotrophic bacterial and fungal flora based on silver and zinc oxide nanoparticles decorated on fibrous air filter. Atmos. Pollut. Res. 9, 172–177, https://doi.org/10.1016/j.apr.2017.08.005 (2018).

  • 58.

    Adams, R. I., Miletto, M., Taylor, J. W. & Bruns, T. D. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. Isme Journal 7, 1262–1273, https://doi.org/10.1038/ismej.2013.28 (2013).

  • 59.

    Martin, L. J. et al. Evolution of the indoor biome. Trends in Ecology & Evolution 30, 223–232, https://doi.org/10.1016/j.tree.2015.02.001 (2015).

    • Article
    • Google Scholar
  • 60.

    Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. Isme Journal 5, 601–612, https://doi.org/10.1038/ismej.2010.167 (2011).

  • 61.

    Barberan, A. et al. The ecology of microscopic life in household dust. Proceedings of the Royal Society B-Biological Sciences 282, 212–220, https://doi.org/10.1098/rspb.2015.1139 (2015).

    • Article
    • Google Scholar
  • 62.

    Rintala, H., Pitkaranta, M. & Taubel, M. In Advances in Applied Microbiology, Vol 78 Vol. 78 Advances in Applied Microbiology (eds A. I. Laskin, S. Sariaslani, & G. M. Gadd) 75-120 (Elsevier Academic Press Inc, 2012).

  • 63.

    Xie, X., Li, Y., Sun, H. & Liu, L. Exhaled droplets due to talking and coughing. J. R. Soc. Interface 6, S703–S714, https://doi.org/10.1098/rsif.2009.0388.focus (2009).

  • 64.

    Nicas, M., Nazaroff, W. W. & Hubbard, A. Toward understanding the risk of secondary airborne infection: Emission of respirable pathogens. Journal of Occupational and Environmental Hygiene 2, 143–154, https://doi.org/10.1080/15459620590918466 (2005).

  • 65.

    Adams, R. I. et al. Chamber Bioaerosol Study: Outdoor Air and Human Occupants as Sources of Indoor Airborne Microbes. PLoS One 10, 18, https://doi.org/10.1371/journal.pone.0128022 (2015).

  • 66.

    Xu, J. et al. Evolution of symbiotic bacteria in the distal human intestine. PLoS. Biol. 5, 1574–1586, https://doi.org/10.1371/journal.pbio.0050156 (2007).

  • 67.

    Wang, K. et al. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Sci Rep 6, https://doi.org/10.1038/srep22943 (2016).

  • 68.

    Chotai, S. et al. Brain Abscess Caused by Gemella Morbillorum: Case Report and Review of the Literature. Turk. Neurosurg. 22, 374–377, https://doi.org/10.5137/1019-5149.jtn.3634-10.0 (2012).

  • 69.

    Mor, G. & Kwon, J.-Y. Trophoblast-microbiome interaction: a new paradigm on immune regulation. American Journal of Obstetrics and Gynecology 213, S131–S137, https://doi.org/10.1016/j.ajog.2015.06.039 (2015).

  • 70.

    Ruan, J. Bergey’s Manual of Systematic Bacteriology (second edition) Volume 5 and the study of Actinomycetes systematic in China. Wei sheng wu xue bao = Acta microbiologica Sinica 53, 521–530 (2013).

    • PubMed
    • Google Scholar
  • 71.

    Sagrista, M. et al. Inguinal syndrome secondary to Prevotella bivia after accidental bite in orogenital sex. Sex. Transm. Infect. 88, 250–251, https://doi.org/10.1136/sextrans-2011-050348 (2012).

  • 72.

    Fettweis, J. M. et al. Differences in vaginal microbiome in African American women versus women of European ancestry. Microbiology-(UK) 160, 2272–2282, https://doi.org/10.1099/mic.0.081034-0 (2014).

  • 73.

    Shi, P. L. et al. The response of soil bacterial communities to mining subsidence in the west China aeolian sand area. Appl. Soil Ecol. 121, 1–10, https://doi.org/10.1016/j.apsoil.2017.09.020 (2017).

  • 74.

    Li, X. H. et al. Diversity of chlorpyrifos-degrading bacteria isolated from chlorpyrifos-contaminated samples. Int. Biodeterior. Biodegrad. 62, 331–335, https://doi.org/10.1016/j.ibiod.2008.03.001 (2008).

  • 75.

    Tringe, S. G. et al. The airborne metagenome in an indoor urban environment. PLoS One 3, e1862 (2008).

  • 76.

    Bhangar, S. et al. Chamber bioaerosol study: human emissions of size-resolved fluorescent biological aerosol particles. Indoor air 26, 193–206, https://doi.org/10.1111/ina.12195 (2016).

  • 77.

    Burge, H. Bioaerosols – Prevalence And Health-Effects In The Indoor Environment. J. Allergy Clin. Immunol. 86, 687–701, https://doi.org/10.1016/s0091-6749(05)80170-8 (1990).

  • 78.

    Clark, S., Rylander, R. & Larsson, L. Airborne bacteria, endotoxin and fungi in dust in poultry and swine confinement buildings. Am. Ind. Hyg. Assoc. J. 44, 537–541, doi:10.1202/0002-8894(1983)044<0537:abeafi>2.3.co;2 (1983).

  • 79.

    Dales, R. E. et al. Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital. Am. J. Respir. Crit. Care Med. 162, 2087–2090, https://doi.org/10.1164/ajrccm.162.6.2001020 (2000).

  • 80.

    Hyvarinen, A. et al. Dust sampling methods for endotoxin – an essential, but underestimated issue. Indoor air 16, 20–27, https://doi.org/10.1111/j.1600-0668.2005.00392.x (2006).

  • 81.

    Park, J. H. et al. Longitudinal study of dust and airborne endotoxin in the home. Environmental Health Perspectives 108, 1023–1028, https://doi.org/10.1289/ehp.001081023 (2000).

  • 82.

    Manteca, A., Fernandez, M. & Sanchez, J. J. M. A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus. 151, 3689–3697 (2005).

  • 83.

    Simeng, L., Zhuangzhuang, W. & Guoqiang, L. Degradation kinetics of toilet paper fiber during wastewater treatment: Effects of solid retention time and microbial community. Chemosphere 225, 915–926, https://doi.org/10.1016/j.chemosphere.2019.03.097 (2019).

  • 84.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 85.

    Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing. Nature Biotechnology 30, 460 (2012).

  • 86.

    Edgar, R. C., Haas, B. J., Clemente, J. C., Christopher, Q. & Rob, K. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

  • 87.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335 (2010).

  • 88.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods 10, 996 (2013).

  • 89.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied & Environmental Microbiology 73, 5261 (2007).

  • 90.

    Li, B., Zhang, X., Guo, F., Wu, W. & Zhang, T. J. W. R. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. 47, 4207–4216 (2013).

  • 91.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biological Conservation 61, 1–10, https://doi.org/10.1016/0006-3207(92)91201-3 (1992).

    • Article
    • Google Scholar
  • 92.

    Magali, N. R. et al. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. 131, 201–212 (2013).


  • Source: Ecology - nature.com

    Energy economics class inspires students to pursue clean energy careers

    Shut down of the South American summer monsoon during the penultimate glacial