in

Bark beetle outbreak enhances biodiversity and foraging habitat of native bees in alpine landscapes of the southern Rocky Mountains

  • 1.

    Veblen, T. T., Hadley, K. S., Reid, M. S. & Rebertus, A. J. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology 72, 213–231 (1991).

    Article  Google Scholar 

  • 2.

    Edburg, S. L. et al. Cascading impacts of bark beetle-caused tree mortality on coupled biogeophysical and biogeochemical processes. Front. Ecol. Environ. 10, 416–424 (2012).

    Article  Google Scholar 

  • 3.

    Raffa, K. F. et al. Cross-scale drivers of natural disturbance prone to anthropogenic amplification: The dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).

    Article  Google Scholar 

  • 4.

    McFarlane, B. L., Stumpf-Allen, R. G. C. & Watson, D. O. Public perceptions of natural disturbance in Canada’s national parks: The case of the mountain pine beetle (Dendroctonus ponderosae Hopkins). Biol. Conserv. 130, 340–348 (2006).

    Article  Google Scholar 

  • 5.

    Morris, J. L. et al. Bark beetles as agents of change in social-ecological systems. Front. Ecol. Environ. 16, S34–S43 (2018).

    Article  Google Scholar 

  • 6.

    Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2014).

    Article  Google Scholar 

  • 7.

    Colorado State Forest Service. Report on the Health of Colorado Forests (Colorado State Forest Service Media, Fort Collins, 2014).

    Google Scholar 

  • 8.

    Meddens, A. J. & Hicke, J. A. Spatial and temporal patterns of Landsat-based detection of tree mortality caused by a mountain pine beetle outbreak in Colorado, USA. For. Ecol. Manag. 322, 78–88 (2014).

    Article  Google Scholar 

  • 9.

    Rhoades, P. R., Davis, T. S., Tinkham, W. T. & Hoffman, C. M. Effects of seasonality, forest structure, and understory plant richness on bee community assemblage in a southern Rocky Mountain mixed conifer forest. Ann. Entomol. Soc. Am. 111, 278–284 (2018).

    Google Scholar 

  • 10.

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  Google Scholar 

  • 11.

    Harrington, T. B. & Edwards, M. B. Understory vegetation, resource availability, and litterfall responses to pine thinning and woody vegetation control in longleaf pine plantations. Can. J. For. Res. 29, 1055–1064 (1999).

    Article  Google Scholar 

  • 12.

    Takafumi, H. & Hiura, T. Effects of disturbance history and environmental factors on the diversity and productivity of understory vegetation in a cool-temperate forest in Japan. For. Ecol. Manag. 257, 843–857 (2009).

    Article  Google Scholar 

  • 13.

    Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–326 (2018).

    Article  Google Scholar 

  • 14.

    Holway, J. G. & Ward, R. T. Phenology of alpine plants in northern Colorado. Ecology 46, 73–83 (1965).

    Article  Google Scholar 

  • 15.

    R Core Team. R: A Language and Environment for Statistical Programming. R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org. (2020).

  • 16.

    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 346–367 (1974).

    MATH  Google Scholar 

  • 17.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Article  Google Scholar 

  • 18.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Article  Google Scholar 

  • 19.

    Hsieh, T.C., Ma, K.H. & Chao, A. iNext: Interpolation and extrapolation for species diversity. R package V 2.0.20 (2020).

  • 20.

    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Wild bee diversity increases with local fire severity in a fire-prone landscape. Ecosphere 10, e02668. https://doi.org/10.1002/ecs2.2668 (2019).

    Article  Google Scholar 

  • 21.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 22.

    Oksanen, J., Guillaume-Blanchet, F., Friendly, M., Kindt, R., Legendre, P. & McGlinn, D., et al. Community ecology package ‘vegan’. R package V 2.5-6 (2019).

  • 23.

    McCabe, L. M., Cobb, N. S. & Butterfield, B. J. Environmental filtering of body size and darker coloration in pollinator communities indicate thermal restrictions on bees, but not flies, at high elevations. PeerJ 7, e7867. https://doi.org/10.7717/peerj.7867 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Oyen, K. J., Giri, S. & Dillon, M. E. Altitudinal variation in bumble bee (Bombus) critical thermal limits. J. Therm. Biol. 59, 52–57 (2016).

    Article  Google Scholar 

  • 25.

    Woodard, S. H. Bumble bee ecophysiology: Integrating the changing environment and the organism. Curr. Opin. Insect Sci. 22, 101–108 (2017).

    Article  Google Scholar 

  • 26.

    Carper, A. L. & Bowers, M. D. The Conservation Value of Woody Debris for Cavity-Nesting Bees on Boulder County Open Space (Boulder County Open Space Final Report, Boulder, 2017).

    Google Scholar 

  • 27.

    Klutsch, J. G. et al. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For. Ecol. Manag. 258, 641–649 (2009).

    Article  Google Scholar 

  • 28.

    Fayt, P., Machmer, M. M. & Steeger, C. Regulation of spruce bark beetles by woodpeckers—A literature review. For. Ecol. Manag. 206, 1–14 (2005).

    Article  Google Scholar 

  • 29.

    Galbraith, S. M., Cane, J. H., Moldenke, A. R. & Rivers, J. W. Salvage logging reduces wild bee diversity, but not abundance, in severely burned mixed-conifer forest. For. Ecol. Manag. 453, 117622 (2019).

    Article  Google Scholar 

  • 30.

    Angers, V. A., Drapeau, P. & Bergeron, Y. Mineralization rates and factors influencing snag decay in four North American boreal tree species. Can. J. For. Res. 42, 157–166 (2011).

    Article  Google Scholar 

  • 31.

    Miller-Struttmann, N. E. & Galen, C. High-altitude multi-taskers: Bumble bee food plant use broadens along an altitudinal productivity gradient. Oecologia 176, 1033–1045 (2014).

    ADS  Article  Google Scholar 

  • 32.

    Burkle, L. A., Simanonok, M. P., Durney, J. S., Myers, J. A. & Belote, R. T. Wildfires influence abundance, diversity, and intraspecific and interspecific trait variation of native bees and flowering plants across burned and unburned landscapes. Front. Ecol. Evol. 7, 252. https://doi.org/10.3389/fevo.2019.00252 (2019).

    Article  Google Scholar 

  • 33.

    Owen, E. L., Bale, J. S. & Hayward, S. A. L. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding. PLoS ONE 8, e80061. https://doi.org/10.1371/journal.pone.0080061 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Rodriguez, A. & Kouki, J. Disturbance-mediated heterogeneity drives pollinator diversity in boreal managed forest ecosystems. Ecol. Appl. 27, 589–602 (2017).

    Article  Google Scholar 

  • 35.

    Cane, J. H. & Neff, J. L. Predicted fates of ground-nesting bees in soil heated by wildfire: Thermal tolerances of life stages and a survey of nesting depths. Biol. Conserv. 144, 2631–2636 (2011).

    Article  Google Scholar 

  • 36.

    Odanaka, K., Gibbs, J., Turley, N. E., Isaacs, R. & Brudvig, L. A. Canopy thinning, not agricultural history, determines early responses of wild bees to longleaf pine savanna restoration. Restor. Ecol. 28, 138–146 (2020).

    Article  Google Scholar 

  • 37.

    Rubene, D., Schroeder, M. & Ranius, T. Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biol. Conserv. 184, 201–208 (2015).

    Article  Google Scholar 

  • 38.

    Mielke, J. L. Rate of deterioration of beetle-killed Engelmann spruce. J. For. 48, 882–888 (1950).

    Google Scholar 

  • 39.

    Raphael, M. G. & Morrison, M. L. Decay and dynamics of snags in the Sierra Nevada, California. For. Sci. 33, 774–783 (1987).

    Google Scholar 

  • 40.

    Rhoades, P. R. et al. Sampling technique affects detection of habitat factors influencing wild bee communities. J. Insect Conserv. 21, 703–714 (2017).

    Article  Google Scholar 

  • 41.

    Westphal, C. et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecol. Monogr. 78, 653–671 (2008).

    Article  Google Scholar 

  • 42.

    Romme, W. H., Knight, D. H. & Yavitt, J. B. Mountain pine beetle outbreaks in the Rocky Mountains: Regulators of primary productivity?. Am. Nat. 127, 484–494 (1986).

    Article  Google Scholar 

  • 43.

    Nelson, K. N., Rocca, M. E., Diskin, M., Aoki, C. F. & Romme, W. H. Predictors of bark beetle activity and scale-dependent spatial heterogeneity change during the course of an outbreak in a subalpine forest. Landsc. Ecol. 29, 97–109 (2014).

    Article  Google Scholar 

  • 44.

    Lozier, J. D., Strange, J. P. & Koch, J. B. Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae). Conserv. Genet. 14, 1099–1110 (2013).

    Article  Google Scholar 

  • 45.

    Boscolo, D., Tokumoto, P. M., Ferreira, P. A., Ribeiro, J. W. & dos Santos, J. S. Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspect. Ecol. Evol. 15, 18–24 (2017).

    Google Scholar 

  • 46.

    Ründlof, M., Nilsson, H. & Smith, H. G. Interacting effects of farming practice and landscape context on bumble bees. Biol. Conserv. 141, 417–426 (2008).

    Article  Google Scholar 

  • 47.

    Andersson, G. K., Ekroos, J., Stjernman, M., Ründlof, M. & Smith, H. G. Effects of farming intensity, crop rotation and landscape heterogeneity on field bean pollination. Agric. Ecosyst. Environ. 184, 145–148 (2014).

    Article  Google Scholar 

  • 48.

    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628. https://doi.org/10.1371/journal.pone.0123628 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Wildland fire as an atmospheric source of viable microbial aerosols and biological ice nucleating particles

    Cry1C rice doesn’t affect the ecological fitness of rice brown planthopper, Nilaparvata lugens either under RDV stress or not