in

Bighorn sheep gut microbiomes associate with genetic and spatial structure across a metapopulation

  • 1.

    Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

  • 2.

    Longman, R. S. & Littman, D. R. The functional impact of the intestinal microbiome on mucosal immunity and systemic autoimmunity. Curr. Opin. Rheumatol. 27, 381–387 (2015).

  • 3.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

  • 4.

    Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

  • 5.

    Qu, W. et al. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol. Nutr. Food Res. 61 (2017).

  • 6.

    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

  • 7.

    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).

  • 8.

    Gaulke, C. A. et al. Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota. MBio 9 (2018).

  • 9.

    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).

  • 10.

    Kueneman, J. G. et al. The amphibian skin-associated microbiome across species, space and life history stages. Mol. Ecol. 23, 1238–1250 (2014).

  • 11.

    Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5, 163 (2017).

  • 12.

    Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).

  • 13.

    Campbell, S. C. et al. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PLoS One 11, e0150502 (2016).

  • 14.

    He, C. et al. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice. Front. Microbiol. 9, 639 (2018).

  • 15.

    Levins, R. Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control. Bull. Entomol. Soc. Am. 15, 237–240 (1969).

    • Google Scholar
  • 16.

    Hanski, I. & Professor in the Department of Ecology and Systematics Ilkka Hanski. Metapopulation Ecology. (OUP Oxford, 1999).

  • 17.

    Hird, S. M. Evolutionary Biology Needs Wild Microbiomes. Front. Microbiol. 8, 725 (2017).

  • 18.

    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).

  • 19.

    Sharpton, T. J. Role of the Gut Microbiome in Vertebrate Evolution. mSystems 3, e00174–17 (2018).

  • 20.

    Suzuki, T. A., Martins, F. M. & Nachman, M. W. Altitudinal variation of the gut microbiota in wild house mice. Mol. Ecol., https://doi.org/10.1111/mec.14905 (2018).

  • 21.

    Zhang, Z. et al. Convergent Evolution of Rumen Microbiomes in High-Altitude Mammals. Curr. Biol. 26, 1873–1879 (2016).

  • 22.

    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221 (2018).

  • 23.

    Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127, 423–433 (2006).

  • 24.

    Steury, R. A., Currey, M. C., Cresko, W. A. & Bohannan, B. J. M. Population genetic divergence and environment influence the gut microbiome in Oregon threespine stickleback. Genes 10 (2019).

  • 25.

    Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).

  • 26.

    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 4 (2015).

  • 27.

    Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).

  • 28.

    Trosvik, P. et al. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome 6, 84 (2018).

  • 29.

    Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

  • 30.

    Shabat, S. K. B. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).

  • 31.

    Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).

  • 32.

    Creech, T. G., Epps, C. W., Monello, R. J. & Wehausen, J. D. Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI. J. Arid. Environ. 127, 160–170 (2016).

  • 33.

    Epps, C. W., McCullough, D. R., Wehausen, J. D., Bleich, V. C. & Rechel, L. J. Effects of climate change on population persistence of desert-dwelling mountain sheep in California. Conserv. Biol. 18, 102–113 (2004).

    • Article
    • Google Scholar
  • 34.

    Epps, C. W., Palsbøll, P. J., Wehausen, J. D., Roderick, G. K. & McCullough, D. R. Elevation and connectivity define genetic refugia for mountain sheep as climate warms. Mol. Ecol. 15, 4295–4302 (2006).

  • 35.

    Epps, C. W. et al. Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol. Lett. 8, 1029–1038 (2005).

    • Article
    • Google Scholar
  • 36.

    Tal, M., Verbrugghe, A., Gomez, D. E., Chau, C. & Weese, J. S. The effect of storage at ambient temperature on the feline fecal microbiota. BMC Vet. Res. 13, 256 (2017).

  • 37.

    Epps, C. W., Crowhurst, R. S. & Nickerson, B. S. Assessing changes in functional connectivity in a desert bighorn sheep metapopulation after two generations. Mol. Ecol. 27, 2334–2346 (2018).

  • 38.

    Torres, S. G., Bleich, V. C. & Wehausen, J. D. Status of bighorn sheep in California, 1993. Desert Bighorn Counc. Trans. 38, 17–28 (1994).

    • Google Scholar
  • 39.

    Wehausen, J. D. Rapid Extinction of Mountain Sheep Populations Revisited. Conserv. Biol. 13, 378–384 (1999).

    • Article
    • Google Scholar
  • 40.

    Epps, C. W., Wehausen, J. D., Bleich, V. C., Torres, S. G. & Brashares, J. S. Optimizing dispersal and corridor models using landscape genetics. J. Appl. Ecol. 44, 714–724 (2007).

    • Article
    • Google Scholar
  • 41.

    Ramey, R. R. Mitochondrial DNA variation, population structure, and evolution of mountain sheep in the south-western United States and Mexico. Mol. Ecol. 4, 429–440 (1995).

    • Article
    • Google Scholar
  • 42.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

  • 43.

    Coltman, D. W., Pilkington, J., Kruuk, L. E., Wilson, K. & Pemberton, J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 2116–2125 (2001).

  • 44.

    Maddox, J. F. et al. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 11, 1275–1289 (2001).

  • 45.

    Buitkamp, J., Schwaiger, F. W. & Epplen, J. T. Vb6 T-cell receptor elements in artiodactyls: conservation and germline polymorphisms. Mamm. Genome 4, 504–510 (1993).

  • 46.

    Johnson, H. E., Mills, L. S., Wehausen, J. D., Stephenson, T. R. & Luikart, G. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep. Conserv. Biol. 25, 1240–1249 (2011).

  • 47.

    Luikart, G. et al. High connectivity among argali sheep from Afghanistan and adjacent countries: Inferences from neutral and candidate gene microsatellites. Conserv. Genet. 12, 921–931 (2011).

    • Article
    • Google Scholar
  • 48.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods 13(7), 581–583 (2016).

  • 49.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6 (2013).

  • 50.

    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    • Article
    • Google Scholar
  • 51.

    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).

  • 52.

    Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol. Ecol. Resour. 18, 55–67 (2018).

  • 53.

    Tanca, A. et al. Diversity and functions of the sheep faecal microbiota: a multi-omic characterization. Microb. Biotechnol. 10, 541–554 (2017).

  • 54.

    Deusch, S. et al. A Structural and Functional Elucidation of the Rumen Microbiome Influenced by Various Diets and Microenvironments. Front. Microbiol. 8, 1605 (2017).

  • 55.

    Liu, J., Xue, C., Sun, D., Zhu, W. & Mao, S. Impact of high-grain diet feeding on mucosa-associated bacterial community and gene expression of tight junction proteins in the small intestine of goats. MicrobiologyOpen 8, e00745 (2019).

  • 56.

    Huws, S. A. et al. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceaeincertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiology 13, 1500–1512 (2011).

  • 57.

    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

  • 58.

    Perea, K. et al. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J. Anim. Sci. 95, 2585–2592 (2017).

  • 59.

    Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

  • 60.

    Mueller, S. et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl. Environ. Microbiol. 72, 1027–1033 (2006).

  • 61.

    Martínez, I. et al. The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes. Cell Rep. 11, 527–538 (2015).

  • 62.

    Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

  • 63.

    Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: a comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).

  • 64.

    Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B. & Gänzle, M. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One 6, e27905 (2011).

  • 65.

    Toivanen, P., Vaahtovuo, J. & Eerola, E. Influence of major histocompatibility complex on bacterial composition of fecal flora. Infect. Immun. 69, 2372–2377 (2001).

  • 66.

    Bolnick, D. I. et al. Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity. Mol. Ecol. 23, 4831–4845 (2014).

  • 67.

    Pearce, D. S., Hoover, B. A., Jennings, S., Nevitt, G. A. & Docherty, K. M. Morphological and genetic factors shape the microbiome of a seabird species (Oceanodroma leucorhoa) more than environmental and social factors. Microbiome 5, 146 (2017).

  • 68.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9(6), 683–693 (2006).


  • Source: Ecology - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes