in

Biodiversity increases multitrophic energy use efficiency, flow and storage in grasslands

  • 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 2.

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

  • 3.

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    • Article
    • Google Scholar
  • 4.

    Hector, A. et al. Plant diversity and productivity experiments in european grasslands. Science 286, 1123–1127 (1999).

  • 5.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

  • 6.

    Hector, A., Beale, A., Minns, A., Otway, S. & Lawton, J. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90, 357–371 (2000).

    • Article
    • Google Scholar
  • 7.

    Milcu, A., Partsch, S., Scherber, C., Weisser, W. W. & Scheu, S. Earthworms and legumes control litter decomposition in a plant diversity gradient. Ecology 89, 1872–1882 (2008).

    • Article
    • Google Scholar
  • 8.

    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).

  • 9.

    Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).

  • 10.

    Duffy, J. E. et al. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10, 522–538 (2007).

    • Article
    • Google Scholar
  • 11.

    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).

    • Article
    • Google Scholar
  • 12.

    Juday, C. The annual energy budget of an inland lake. Ecology 21, 438–450 (1940).

    • Article
    • Google Scholar
  • 13.

    Getz, W. M. Biomass transformation webs provide a unified approach to consumer-resource modelling. Ecol. Lett. 14, 113–124 (2011).

    • Article
    • Google Scholar
  • 14.

    Barnes, A. D. et al. Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nat. Commun. 5, 5351 (2014).

  • 15.

    Ghedini, G., Loreau, M., White, C. R. & Marshall, D. J. Testing MacArthur’s minimisation principle: do communities minimise energy wastage during succession? Ecol. Lett. 21, 1182–1190 (2018).

    • Article
    • Google Scholar
  • 16.

    Gamfeldt, L. et al. Marine biodiversity and ecosystem functioning: what’s known and what’s next? Oikos 124, 252–265 (2015).

    • Article
    • Google Scholar
  • 17.

    Unsicker, S. B. et al. Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia 150, 233–246 (2006).

    • Article
    • Google Scholar
  • 18.

    Hertzog, L. R., Ebeling, A., Weisser, W. W. & Meyer, S. T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990 (2017).

    • Article
    • Google Scholar
  • 19.

    Odum, E. P. Trends expected in stressed ecosystems. BioScience 35, 419–422 (1985).

    • Article
    • Google Scholar
  • 20.

    Margalef, R. On certain unifying principles in ecology. Am. Nat. 97, 357–374 (1963).

    • Article
    • Google Scholar
  • 21.

    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    • Article
    • Google Scholar
  • 22.

    Eisenhauer, N., Reich, P. B. & Scheu, S. Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic Appl. Ecol. 13, 571–578 (2012).

    • Article
    • Google Scholar
  • 23.

    Ludovisi, A., Pandolfi, P. & Taticchi, M. I. The strategy of ecosystem development: specific dissipation as an indicator of ecosystem maturity. J. Theor. Biol. 235, 33–43 (2005).

    • Article
    • Google Scholar
  • 24.

    Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity–ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).

    • Article
    • Google Scholar
  • 25.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    • Article
    • Google Scholar
  • 26.

    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).

  • 27.

    Meyer, S. T. et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7, e01619 (2016).

  • 28.

    Fagan, W. F. et al. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).

    • Article
    • Google Scholar
  • 29.

    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

  • 30.

    Bessler, H. et al. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs. Ecology 90, 1520–1530 (2009).

    • Article
    • Google Scholar
  • 31.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).

  • 32.

    Berlow, E. Strong effects of weak interactions in ecological communities. Nature 398, 330–334 (1999).

  • 33.

    Moore, J. C., de Ruiter, P. C. & Hunt, H. W. Influence of productivity on the stability of real and model ecosystems. Science 261, 906–908 (1993).

  • 34.

    Pfisterer, A. B. & Schmid, B. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416, 84–86 (2002).

  • 35.

    Pilette, R. Evaluating direct and indirect effects in ecosystems. Am. Nat. 133, 303–307 (1989).

    • Article
    • Google Scholar
  • 36.

    Eisenhauer, N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl Acad. Sci. USA 110, 6889–6894 (2013).

    • Article
    • Google Scholar
  • 37.

    Hines, J. et al. Towards an integration of biodiversity–ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Adv. Ecol. Res. 53, 161–199 (2015).

    • Article
    • Google Scholar
  • 38.

    Hines, J. et al. A meta food web for invertebrate species collected in a European grassland. Ecology 100, e02679 (2019).

    • Article
    • Google Scholar
  • 39.

    Giling, D. P. et al. Plant diversity alters the representation of motifs in food webs. Nat. Commun. 10, 1226 (2019).

  • 40.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

  • 41.

    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).

    • Article
    • Google Scholar
  • 42.

    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1986).

  • 43.

    Eisenhauer, N. et al. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term. PLoS ONE 6, e16055 (2011).

  • 44.

    Ravenek, J. M. et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123, 1528–1536 (2014).

    • Article
    • Google Scholar
  • 45.

    Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems (Univ. California Press, 1979).

  • 46.

    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).

    • Google Scholar
  • 47.

    Sechi, V., Brussaard, L., De Goede, R. G. M., Rutgers, M. & Mulder, C. Choice of resolution by functional trait or taxonomy affects allometric scaling in soil food webs. Am. Nat. 185, 142–149 (2015).

    • Article
    • Google Scholar
  • 48.

    Cortois, R. et al. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere 8, e01719 (2017).

    • Article
    • Google Scholar
  • 49.

    Andrássy, I. Die rauminhalst and gewichtsbestimmung der fadenwürmer (Nematoden). Acta Zool. Acad. Sci. 2, 1–15 (1956).

    • Google Scholar
  • 50.

    Yeates, G. W., Bongers, T., De Goede, R. G., Freckman, D. W. & Georgieva, S. S. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J. Nematol. 25, 315–331 (1993).

  • 51.

    Ferris, H. NEMAPLEX The Nematode-Plant Information System. A Virtual Encyclopedia on Soil and Plant Nematodes (Univ. California, 1999); http://nemaplex.ucdavis.edu/

  • 52.

    Sieriebriennikov, B., Ferris, H. & de Goede, R. G. M. NINJA: an automated calculation system for nematode-based biological monitoring. Eur. J. Soil Biol. 61, 90–93 (2014).

    • Article
    • Google Scholar
  • 53.

    Scheu, S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118 (1992).

    • Article
    • Google Scholar
  • 54.

    Strecker, T. et al. Effects of plant diversity, functional group composition, and fertilization on soil microbial properties in experimental grassland. PLoS ONE 10, e0125678 (2015).

  • 55.

    Beck, T. et al. An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biol. Biochem. 29, 1023–1032 (1997).

  • 56.

    Eisenhauer, N. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91, 485–496 (2010).

  • 57.

    Steinbeiss, S. et al. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Change Biol. 14, 2937–2949 (2008).

    • Article
    • Google Scholar
  • 58.

    Loranger, H. et al. Invertebrate herbivory increases along an experimental gradient of grassland plant diversity. Oecologia 174, 183–193 (2014).

    • Article
    • Google Scholar
  • 59.

    Vogel, A., Eisenhauer, N., Weigelt, A. & Scherer-Lorenzen, M. Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties. Glob. Change Biol. 19, 2795–2803 (2013).

    • Article
    • Google Scholar
  • 60.

    Engelmann, M. D. The role of soil arthropods in the energetics of an old field community. Ecol. Monogr. 31, 221–238 (1961).

    • Article
    • Google Scholar
  • 61.

    De Ruiter, P. C., Van Veen, J. A., Moore, J. C., Brussaard, L. & Hunt, H. W. Calculation of nitrogen mineralization in soil food webs. Plant Soil 157, 263–273 (1993).

    • Article
    • Google Scholar
  • 62.

    Sneath, P. H. A. Longevity of micro-organisms. Nature 195, 643–646 (1962).

  • 63.

    Ehnes, R. B., Rall, B. C. & Brose, U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates. Ecol. Lett. 14, 993–1000 (2011).

    • Article
    • Google Scholar
  • 64.

    Reich, P. B., Tjoelker, M. G., Machado, J.-L. & Oleksyn, J. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature 439, 457–461 (2006).

  • 65.

    Eisenhauer, N., Milcu, A., Sabais, A. C. W. & Scheu, S. Animal ecosystem engineers modulate the diversity-invasibility relationship. PLoS ONE 3, e3489 (2008).

  • 66.

    Eisenhauer, N. Earthworms in a Plant Diversity Gradient: Direct and Indirect Effects on Plant Competition and Establishment. PhD thesis, TU Darmstadt (2008).

  • 67.

    Kazanci, C. EcoNet: a new software for ecological modeling, simulation and network analysis. Ecol. Modell. 208, 3–8 (2007).

    • Article
    • Google Scholar
  • 68.

    MATLAB—the language of technical computing. v.8.1, 2013a (MathWorks, 2013); https://www.mathworks.com/products/matlab/

  • 69.

    Borrett, S. R. & Lau, M. K. enaR: an R package for ecosystem network analysis. Methods Ecol. Evol. 5, 1206–1213 (2014).

    • Article
    • Google Scholar
  • 70.

    Borrett, S. R., Whipple, S. J. & Patten, B. C. Rapid development of indirect effects in ecological networks. Oikos 119, 1136–1148 (2010).

    • Article
    • Google Scholar
  • 71.

    Borrett, S. R. & Scharler, U. M. Walk partitions of flow in ecological network analysis: review and synthesis of methods and indicators. Ecol. Indic. 106, 105451 (2019).

    • Article
    • Google Scholar
  • 72.

    Wiegert, R. G. & Kozlowski, J. Indirect causality in ecosystems. Am. Nat. 124, 293–298 (1984).

    • Article
    • Google Scholar
  • 73.

    Hines, D. E., Ray, S. & Borrett, S. R. Uncertainty analyses for ecological network analysis enable stronger inferences. Environ. Modell. Softw. 101, 117–127 (2018).

    • Article
    • Google Scholar
  • 74.

    Soetaert, K., Van den Meersche, K. & van Oevelen, D. limSolve: solving linear inverse models in R. R package v.1.5.1 (2009).

  • 75.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); http://www.R-project.org/

  • 76.

    Murray, A. A Chaos of Delight. The Wonderful World of Soil Mesofauna (accessed 2 December 2019); https://www.chaosofdelight.org/

  • 77.

    IAN/UMCES Symbol and Image Libraries (Integration and Application Network, Univ. Maryland Center for Environmental Science, accessed 2 December 2019); https://ian.umces.edu/symbols/

  • 78.

    Smith, M. et al. NodeXL: A Free and Open Network Overview, Discovery and Exploration add-in for Excel Version NodeXL Basic (The Social Media Research Foundation, 2010); https://www.smrfoundation.org


  • Source: Ecology - nature.com

    Mars 2020: The search for ancient life is on

    A material’s insulating properties can be tuned at will