in

Bryophytes can recognize their neighbours through volatile organic compounds

  • 1.

    Green, D. G. & Sadedin, S. Interactions matter—complexity in landscapes and ecosystems. Ecol Complex 2, 117–130 (2005).

    • Article
    • Google Scholar
  • 2.

    Smith, H. Light Quality, Photoperception, and Plant Strategy. Ann Rev Plant Physio 33, 481–518 (1982).

  • 3.

    Baldwin, I. T. & Schultz, J. C. Rapid Changes in Tree Leaf Chemistry Induced by Damage: Evidence for Communication between Plants. Science 221, 277–279 (1983).

  • 4.

    Rhoades, D. F. Responses of Alder and Willow to Attack by Tent Caterpillars and Webworms: Evidence for Pheromonal Sensitivity of Willows in Plant Resistance to Insects (ed. Hedin, P. A.) 55–68 (American Chemical Society, 1983).

  • 5.

    Keuskamp, D. H., Sasidharan, R. & Pierik, R. Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signal Behav 5, 655–662 (2010).

  • 6.

    de Wit, M. et al. Plant neighbor detection through touching leaf tips precedes phytochrome signals. PNAS 20, 1–6 (2012).

    • Google Scholar
  • 7.

    Elhakeem, A., Markovic, D., Broberg, A., Anten, N. P. R. & Ninkovic, V. Aboveground mechanical stimuli affect belowground plant-plant communication. PLoS One 13, e0195646 (2018).

  • 8.

    Markovic, D., Nikolic, N., Glinwood, R., Seisenbaeva, G. & Ninkovic, V. Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection? PLoS One 9, 1–19 (2016).

    • Google Scholar
  • 9.

    Markovic, D. et al. Airborne signals synchronize the defenses of neighboring plants in response to touch. J Exp Bot 70, 691–700 (2019).

  • 10.

    Appel, H. M. & Cocroft, R. B. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175, 1257–1266 (2014).

  • 11.

    Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16, 835–843 (2013).

  • 12.

    Biedrzycki, M. L., Jilany, T. A., Dudley, S. A. & Bais, H. P. Root exudates mediate kin recognition in plants. Comm Integr Biol 3, 28–35 (2010).

    • Article
    • Google Scholar
  • 13.

    Tumlinson, J. H. The Importance of Volatile Organic Compounds in Ecosystem Functioning. J Chem Ecol 40, 212–213 (2014).

  • 14.

    Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25, 137–144 (2010).

  • 15.

    Farag, M. A., Zhang, H. & Ryu, C. M. Dynamic Chemical Communication between Plants and Bacteria through Airborne Signals: Induced Resistance by Bacterial Volatiles. J Chem Ecol 39, 1007–1018 (2013).

  • 16.

    Thomas, F. et al. Waterborne Signaling Primes the Expression of Elicitor-Induced Genes and Buffers the Oxidative Responses in the Brown Alga Laminaria digitata. PLoS ONE 6, 1–12 (2011).

    • Google Scholar
  • 17.

    Ditengou, F. A. et al. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6, 1–9 (2015).

  • 18.

    Abedesin, F. et al. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science 30, 1386–1388 (2017).

    • ADS
    • Google Scholar
  • 19.

    Widhalm, J. R., Jaini, R., Morgan, J. A. & Dudareva, N. Rethinking how volatiles are released from plant cells. Trends Plant Sci 20, 545–550 (2015).

  • 20.

    de Moraes, C. M., Mescher, M. C. & Tumlinson, J. H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580 (2001).

  • 21.

    Karban, R., Wetzel, W. C., Shiojiri, K., Pezzola, E. & Blande, J. D. Geographic dialects in volatile communication between sagebrush individuals. Ecology 97, 2917–2924 (2016).

  • 22.

    Kegge, W. et al. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants. Ann Bot-London 115, 961–970 (2015).

  • 23.

    Ninkovic, V., Markovic, D. & Dahlin, I. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspect Plant Ecol 23, 11–17 (2016).

    • Article
    • Google Scholar
  • 24.

    Runyon, J. B., Mescher, M. C. & De Moraes, C. M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313, 1964–1967 (2006).

  • 25.

    Scala, A., Allmann, S., Mirabella, R., Haring, M. A. & Schuurink, R. C. Green Leaf Volatiles: A Plant’s Multifunctional Weapon against Herbivores and Pathogens. Int J Mol Sci 14, 17781–17811 (2013).

  • 26.

    Ninkovic, V. Volatile communication between barley plants affects biomass allocation. J Exp Bot 54, 1931–1939 (2003).

  • 27.

    Caparrotta, S. et al. Induction of priming by salt stress in neighboring plants. Environ Exp Bot 147, 261–270 (2018).

  • 28.

    Karban, R., Shiojiri, K., Huntzinger, M. & Mc Call, A. C. Damage-induced resistance in sagebrush: volatiles are key to intra-and interplant communication. Ecology 87, 922–930 (2006).

  • 29.

    Dahlin, I., Rubene, D., Glinwood, R. & Ninkovic, V. Pest suppression in cultivar mixtures is influenced by neighbor-specific plant–plant communication. Ecol Appl 28, 2187–2196 (2018).

  • 30.

    Ninkovic, V., Al Abassi, S., Ahmed, E., Glinwood, R. & Pettersson, J. Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator. Oecologia 166, 391–400 (2011).

  • 31.

    Lazebnik, J. Jack Pine Signalling and Responses to Herbivory. MS thesis, University of Alberta. 103 pp. (2012).

  • 32.

    Marino, P., Raguso, R. & Goffinet, B. The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues. Symbiosis 47, 61–76 (2009).

  • 33.

    Rosenstiel, T. N., Shortlidge, E. E., Melnychenko, A. N., Pankow, J. F. & Eppley, S. M. Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss. Nature 489, 431–433 (2012).

  • 34.

    Rydin, H. Competition among bryophytes. Advances in bryology 6, 135–168 (1997).

    • Google Scholar
  • 35.

    Van der Hoeven, E. C., Korporaal, M. & Van Gestel, E. Effects of simulated shade on growth, morphology and competitive interactions in two pleurocarpous mosses. J Bryol 20, 301–310 (1998).

    • Article
    • Google Scholar
  • 36.

    Ballaré, C. L. & Pierik, R. The shade-avoidance syndrome: Multiple signals and ecological consequences. Plant Cell Environ 11, 2530–2543 (2017).

  • 37.

    McCuaig, B., Dufour, S. C., Raguso, R. A., Bhatt, A. P. & Marino, P. Structural changes in plastids of developing Splachnum ampullaceum sporophytes and relationship to odour production. Plant Biology 17, 466–473 (2014).

  • 38.

    Chen, F. et al. Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Crit Rev Plant Sci 37, 210–231 (2018).

    • Article
    • Google Scholar
  • 39.

    Ramel, F. et al. Light-Induced Acclimation of the Arabidopsis chlorina1 Mutant to Singlet Oxygen. Plant Cell 25, 1445–1462 (2013).

  • 40.

    Kato-Noguchi, H. & Seki, T. Allelopathy of the moss Rhynchostegium pallidifolium and 3-hydroxy-β-ionone. Plant Signal Behav 5, 702–704 (2010).

  • 41.

    Engelberth, J., Alborn, H. T., Schmelz, E. A. & Tumlinson, J. H. Airborne signals prime plants against insect herbivore attack. PNAS 10, 1781–1785 (2004).

  • 42.

    Kigathi, R. N., Weisser, W. W., Reichelt, M., Gershenzon, J. & Unsicker, S. B. Plant volatile emission depends on the species composition of the neighboring plant community. BMC Plant Biol 19, 58 (2019).

  • 43.

    Quintana-Rodriguez, E. et al. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J Ecol 103, 250–260 (2015).

  • 44.

    Ninkovic, V. et al. Volatile Exchange between Undamaged Plants – a New Mechanism Affecting Insect Orientation in Intercropping. PLoS One 8, e69431, https://doi.org/10.1371/journal.pone.0069431 (2013).

  • 45.

    Vucetic, A. et al. Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signal Behav 9, e29517 (2014).

  • 46.

    Cronberg, N. Clonal structure and fertility in a sympatric population of the peat mosses Sphagnum rubellum and Sphagnum capillifolium. Can J Botany 74, 1375–1385 (1996).

    • Article
    • Google Scholar
  • 47.

    Rydin, H. Competition and niche separation in Sphagnum. Can J Botany 64, 1817–1824 (1986).

    • Article
    • Google Scholar
  • 48.

    Mälson, K. & Rydin, H. Competitive hierarchy, but no competitive exclusions in experiments with rich fen bryophytes. J Bryol 31, 41–45 (2009).

    • Article
    • Google Scholar
  • 49.

    Asakawa, Y. Liverworts-Potential Source of Medicinal Compounds. Curr Pharm Design 14, 3067–3088 (2008).

  • 50.

    Asakawa, Y., Ludwiczuk, A. & Nagashima, F. Phytochemical and biological studies of bryophytes. Phytochemistry 91, 52–80 (2013).

  • 51.

    Gupta, S. K., Sharma, A. & Moktan, S. A review on some species of Marchantia with reference to distribution, characterization and importance. Word journal of pharmacy and pharmaceutical sciences 4, 1576–1588 (2015).

    • Google Scholar
  • 52.

    Valarezo, E. et al. Essential Oil Constituents of Mosses Species from Ecuador. J Essent Oil Bear Pl 21, 189–197 (2018).

  • 53.

    Wu, C.-L. Chemosystematic Correlations of Taiwanese Hepaticae. J Chin Chem Soc_Taip 39, 655–667 (1992).

  • 54.

    Glime, J. M. & Rohwer, F. The comparative effects of ethylene and l-amino-cyclopropanel- carboxylic acid on two species of Fontinalis. J Bryol 12, 611–616 (1983).

    • Article
    • Google Scholar
  • 55.

    Yasumura, Y., Pierik, R., Fricker, M. D., Voesenek, L. A. C. J. & Harberd, N. P. Studies of Physcomitrella patens reveal that ethylene mediated submergence responses arose relatively early in land-plant evolution. Plant J 72, 947–959 (2012).

  • 56.

    Thomas, R. J., Harrison, M. A., Taylor, J. & Kaufman, P. B. Endogenous auxin and ethylene in Pellia (Bryophyta). Plant Physiol 73, 395–397 (1983).

  • 57.

    Jackson, M. B. Ethylene-promoted Elongation: an Adaptation to Submergence Stress. Ann Bot-London 101, 229–248 (2008).

  • 58.

    Pierik, R., Visser, E. J. W., De Kroon, H. & Voesenek, L. A. C. J. Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26, 1229–1234 (2003).

  • 59.

    Pierik, R., Cuppens, M. L. C., Voesenek, L. A. C. J. & Visser, E. J. W. Interactions between Ethylene and Gibberellins in Phytochrome-Mediated Shade Avoidance Responses in Tobacco. Plant Physiol 136, 2928–2936 (2004).

  • 60.

    Kegge, W., Weldegergis, B. T., Soler, R., Eijk, M. V. V. & Dicke, M. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in Arabidopsis thaliana. New Phytol 200, 861–874 (2013).

  • 61.

    Jägerbrand, A. K. & During, H. J. Effects of simulated shade on growth, number of branches and biomass in Hylocomium splendens and Racomitrium lanuginosum. Lindbergia 30, 117–124 (2006).

    • Google Scholar
  • 62.

    Possart, A. & Hiltbrunner, A. An Evolutionarily Conserved Signaling Mechanism Mediates Far-Red Light Responses in Land Plants. The Plant Cell 25, 102–114 (2013).

  • 63.

    van Hinsberg, A. & van Tienderen, P. Variation in growth form in relation to spectral light quality (red/far-red ratio) in Plantago lanceolata L. in sun and shade populations. Oecologia 111, 452–459 (1997).

  • 64.

    Más, P., Devlin, P. F., Panda, S. & Kay, S. A. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000).

  • 65.

    Pedmale, U. V. et al. Cryptochromes Interact Directly with PIFs to Control Plant Growth in Limiting Blue Light. Cell 164, 1–13 (2016).

  • 66.

    Hanyu, H. & Shoji, K. Effects of Blue Light and Red Light on Kidney Bean Plants Grown under Combined Radiation from Narrow-Band Light Sources. Environ Control Biol 38, 13–24 (2000).

    • Article
    • Google Scholar
  • 67.

    Runkle, E. S. & Heins, R. D. Specific Functions of Red, Far Red, and Blue Light in Flowering and Stem Extension of Long-day Plants. J Am Soc Hortic Sci 126, 275–282 (2001).

    • Article
    • Google Scholar
  • 68.

    Rydin, H. & Barber, K. E. Long term and fine scale coexistence of closely related species. Folia Geobot 36, 53–61 (2001).

    • Article
    • Google Scholar
  • 69.

    Gunnarson, U., Shaw, A. J. & Lӧnn, M. Local‐scale genetic structure in the peatmoss Sphagnum fuscum. Mol Ecol 16, 305–312 (2007).

  • 70.

    Rydin, H. Interspecific Competition between Sphagnum Mosses on a Raised Bog. Oikos 66, 413–423 (1993).

    • Article
    • Google Scholar
  • 71.

    Stark, L. R. Ecology of desiccation tolerance in bryophytes: A conceptual framework and methodology. Bryologist 120, 129–164 (2017).

    • Article
    • Google Scholar
  • 72.

    Bragazza, L. A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob Change Biol 14, 2688–2695 (2008).

    • Google Scholar
  • 73.

    Hájek, M., Horsák, M., Hájková, P. & Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect Plant Ecol 8, 97–114 (2006).

    • Article
    • Google Scholar
  • 74.

    Štechová, T., Kučera, J. & Šmilauer, P. Factors affecting population size and vitality of Hamatocaulis vernicosus (Mitt.) Hedenäs (Calliergonaceae, Musci). Wetl Ecol Manag 20, 329–339 (2012).

    • Article
    • Google Scholar
  • 75.

    Vicherová, E., Hájek, M. & Hájek, T. Calcium intolerance of fen mosses: Physiological evidence, effects of nutrient availability and successional drivers. Perspect Plant Ecol 17, 347–359 (2015).

    • Article
    • Google Scholar
  • 76.

    Losvik, A. et al. Overexpression and down-regulation of barley lipoxygenase lox2.2 affects jasmonate-regulated genes and aphid fecundity. Int. J. Mol. Sci. 18, 2765 (2017).

  • 77.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R Core Team nlme: linear and nonlinear mixed effects models. [WWW document], https://cran.r-project.org/package=nlme (2017).


  • Source: Ecology - nature.com

    Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations

    Technique could enable cheaper fertilizer production