in

Can Mitogenomes of the Northern Wheatear (Oenanthe oenanthe) Reconstruct Its Phylogeography and Reveal the Origin of Migrant Birds?

  • 1.

    Avise, J. C. et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522 (1987).

    Google Scholar 

  • 2.

    Avise, J. C. Phylogeography: the history and formation of species. (Harvard university press, 2000).

  • 3.

    Zink, R. M., Pavlova, A., Drovetski, S. & Rohwer, S. Mitochondrial phylogeographies of five widespread Eurasian bird species. J. Ornitol. 149, 399–413, https://doi.org/10.1007/s10336-008-0276-z (2008).

    Article  Google Scholar 

  • 4.

    Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome organization and evolution in nonbilaterian lineages. Genome Biol. Evol. 8, 2896–2913, https://doi.org/10.1093/gbe/evw195 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS One 4, e4119 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S. & Francis, C. M. Identification of birds through DNA barcodes. PLoS Biol. 2, e312 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Johnsen, A. et al. DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J. Ornitol. 151, 565–578 (2010).

    Google Scholar 

  • 8.

    Kerr, K. C. et al. Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. notes 7, 535–543 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kerr, K. C. et al. Filling the gap-COI barcode resolution in eastern Palearctic birds. Front. Zool. 6, 29 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Stoeckle, M. Y. & Thaler, D. S. DNA barcoding works in practice but not in (neutral) theory. PLoS One 9, e100755 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Wang, E., Van Wijk, R. E., Braun, M. S. & Wink, M. Gene flow and genetic drift contribute to high genetic diversity with low phylogeographical structure in European hoopoes (Upupa epops). Mol. Phylogenet. Evol. 113, 113–125 (2017).

    PubMed  Google Scholar 

  • 12.

    Carneiro de Melo Moura, C. et al. Pliocene origin,ice ages and postglacial population expansion have influenced a panmictic phylogeography of the European Bee-Eater Merops apiaster. J. Divers. 11, 12 (2019).

  • 13.

    Pârâu, L. G., Frias-Soler, R. C. & Wink, M. High Genetic Diversity among Breeding Red-Backed Shrikes Lanius collurio in the Western Palearctic. Diversity 11, https://doi.org/10.3390/d11030031 (2019).

  • 14.

    Rising, J. et al. Handbook of the Birds of the World Alive. (Lynx Edicions Barcelona, 2019).

  • 15.

    Schmaljohann, H. et al. Proximate causes of avian protandry differ between subspecies with contrasting migration challenges. Behav. Ecol. 27, 321–331 (2015).

    Google Scholar 

  • 16.

    Bairlein, F., Eikenaar, C. & Schmaljohann, H. Routes to genes: unravelling the control of avian migration—an integrated approach using Northern Wheatear Oenanthe oenanthe as model organism. J. Ornitol. 156, 3–14, https://doi.org/10.1007/s10336-015-1224-3 (2015).

    Article  Google Scholar 

  • 17.

    Bairlein, F. et al. Cross-hemisphere migration of a 25 g songbird. Biol. Lett., rsbl20111223 (2012).

  • 18.

    Bairlein, F. Migratory birds under threat. Science 354, 547–548 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Kaboli, M., Aliabadian, M., Chamani, A., Pasquet, E. & Prodon, R. Morphological relationships of the Wheatears (genus Oenanthe). Russ. J. Ecol. 44, 251–259, https://doi.org/10.1134/s1067413613030168 (2013).

    Article  Google Scholar 

  • 20.

    Svensson, L. Identification guide to European passerines. (L. Svensson, 1992).

  • 21.

    Aliabadian, M., Kaboli, M., Prodon, R., Nijman, V. & Vences, M. Phylogeny of Palaearctic wheatears (genus Oenanthe)–congruence between morphometric and molecular data. Mol. Phylogenet. Evol. 42, 665–675, https://doi.org/10.1016/j.ympev.2006.08.018 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Kaboli, M., Aliabadian, M., Guillaumet, A., Roselaar, C. S. & Prodon, R. Ecomorphology of the wheatears (genus Oenanthe). Ibis 149, 792–805 (2007).

    Google Scholar 

  • 23.

    Förschler, M. I., Khoury, F., Bairlein, F. & Aliabadian, M. Phylogeny of the mourning wheatear Oenanthe lugens complex. Mol. Phylogenet. Evol. 56, 758–767, https://doi.org/10.1016/j.ympev.2010.03.022 (2010).

    Article  PubMed  Google Scholar 

  • 24.

    Outlaw, R. K., Voelker, G. & Bowie, R. C. Shall we chat? Evolutionary relationships in the genus Cercomela (Muscicapidae) and its relation to Oenanthe reveals extensive polyphyly among chats distributed in Africa, India and the Palearctic. Mol. Phylogenet. Evol. 55, 284–292, https://doi.org/10.1016/j.ympev.2009.09.023 (2010).

    Article  PubMed  Google Scholar 

  • 25.

    Alaei Kakhki, N. et al. Phylogeography of the Oenanthe hispanica-pleschanka-cypriaca complex (Aves, Muscicapidae: Saxicolinae): Diversification history of open-habitat specialists based on climate niche models, genetic data, and morphometric data. J. Zool. Sys. Evol. Res. 56, 408–427, https://doi.org/10.1111/jzs.12206 (2018).

    Article  Google Scholar 

  • 26.

    Schweizer, M. & Shirihai, H. Phylogeny of the Oenanthe lugens complex (Aves, Muscicapidae: Saxicolinae): paraphyly of a morphologically cohesive group within a recent radiation of open-habitat chats. Mol. Phylogenet. Evol. 69, 450–461, https://doi.org/10.1016/j.ympev.2013.08.010 (2013).

    Article  PubMed  Google Scholar 

  • 27.

    Panov, E. N. Comparative ethology and molecular genetics as tools for phylogenetic reconstructions: The example of the genus. Oenanthe. Biol. Bull. 38, 809–820, https://doi.org/10.1134/s106235901108005x (2011).

    Article  Google Scholar 

  • 28.

    Schweizer, M. et al. Parallel plumage colour evolution and introgressive hybridization in wheatears. J. Evol. Biol. 32, 100–110 (2019).

    PubMed  Google Scholar 

  • 29.

    Arizaga, J., Schmaljohann, H. & Bairlein, F. Stopover behaviour and dominance: a case study of the Northern Wheatear Oenanthe oenanthe. Ardea 99, 157–165 (2011).

    Google Scholar 

  • 30.

    Corman, A.-M., Bairlein, F. & Schmaljohann, H. The nature of the migration route shapes physiological traits and aerodynamic properties in a migratory songbird. Behav. Ecol. Sociobiol. 68, 391–402 (2014).

    Google Scholar 

  • 31.

    Hobson, K. A. & Wassenaar, L. I. Tracking animal migration with stable isotopes. (Academic Press, 2018).

  • 32.

    Desjardins, P. & Morais, R. Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J. Mol. Biol. 212, 599–634 (1990).

    CAS  PubMed  Google Scholar 

  • 33.

    Jühling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Watanabe, Y., Suematsu, T. & Ohtsuki, T. Losing the stem-loop structure from metazoan mitochondrial tRNAs and co-evolution of interacting factors. Front. Genet. 5, 109, https://doi.org/10.3389/fgene.2014.00109 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Gibb, G. C., Kardailsky, O., Kimball, R. T., Braun, E. L. & Penny, D. Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol. Biol. Evol. 24, 269–280, https://doi.org/10.1093/molbev/msl158 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Allcock, A. L., Cooke, I. R. & Strugnell, J. M. What can the mitochondrial genome reveal about higher-level phylogeny of the molluscan class Cephalopoda? Zool. J. Linn. Soc. 161, 573–586 (2011).

    Google Scholar 

  • 37.

    Cabrera, A. A. et al. Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135, 86–97, https://doi.org/10.1016/j.ympev.2019.02.003 (2019).

    Article  PubMed  Google Scholar 

  • 38.

    Kumar, S. Patterns of nucleotide substitution in mitochondrial protein coding genes of vertebrates. Genetics 143, 537–548 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Braun, E. L. & Kimball, R. T. Examining basal avian divergences with mitochondrial sequences: model complexity, taxon sampling, and sequence length. Syst. Biol. 51, 614–625 (2002).

    PubMed  Google Scholar 

  • 40.

    Duchêne, S., Archer, F. I., Vilstrup, J., Caballero, S. & Morin, P. A. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation. PloS one 6, e27138 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Leavitt, J. R., Hiatt, K. D., Whiting, M. F. & Song, H. Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol. Phylogenet. Evol. 67, 494–508, https://doi.org/10.1016/j.ympev.2013.02.019 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Wang, N., Hosner, P. A., Liang, B., Braun, E. L. & Kimball, R. T. Historical relationships of three enigmatic phasianid genera (Aves: Galliformes) inferred using phylogenomic and mitogenomic data. Mol. Phylogenet. Evol. 109, 217–225, https://doi.org/10.1016/j.ympev.2017.01.006 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 43.

    Richards, E. J., Brown, J. M., Barley, A. J., Chong, R. A. & Thomson, R. C. Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological? Syst. Biol. 67, 847–860 (2018).

    PubMed  Google Scholar 

  • 44.

    Kainer, D. & Lanfear, R. The effects of partitioning on phylogenetic inference. Mol. Biol. Evol. 32, 1611–1627 (2015).

    CAS  PubMed  Google Scholar 

  • 45.

    Wink, M. Use of DNA markers to study bird migration. J. Ornitol. 147, 234–244, https://doi.org/10.1007/s10336-006-0065-5 (2006).

    Article  Google Scholar 

  • 46.

    Cummings, M. P. & Meyer, A. Magic bullets and golden rules: data sampling in molecular phylogenetics. Zoology 108, 329–336 (2005).

    PubMed  Google Scholar 

  • 47.

    Hillis, D. M. Inferring complex phytogenies. Nature 383, 130 (1996).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Sloan, D. B., Havird, J. C. & Sharbrough, J. The on-again, off-again relationship between mitochondrial genomes and species boundaries. Mol. Ecol. 26, 2212–2236, https://doi.org/10.1111/mec.13959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Wink, M. Bird migration “Out of Africa”: The evolution of bird migration. Der Falke – Journal für Vogelbeobachter 60, 26–30 (2014).

    Google Scholar 

  • 50.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276 (1996).

    Google Scholar 

  • 51.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913, https://doi.org/10.1038/35016000 (2000).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 52.

    Finlayson, C. et al. Ecological transitions — But for whom? A perspective from the Pleistocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 329-330, 1–9, https://doi.org/10.1016/j.palaeo.2011.04.002 (2012).

    Article  Google Scholar 

  • 53.

    Frenzel, B. Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. (Geographical Research Institute, Hungarian Academy of Sciences, Budapest, Gustav Fischer Verlag, Stuttgart Jena New York., 1992).

  • 54.

    Lundqvist, J. & Saarnisto, M. Summary of project IGCP-253. Quat. Int. 28, 9–18 (1995).

    Google Scholar 

  • 55.

    Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).

    CAS  PubMed  Google Scholar 

  • 56.

    Irwin, D. E., Rubtsov, A. S. & Panov, E. N. Mitochondrial introgression and replacement between yellowhammers (Emberiza citrinella) and pine buntings (Emberiza leucocephalos)(Aves: Passeriformes). Biol. J. Linn. Soc. 98, 422–438 (2009).

    Google Scholar 

  • 57.

    Semenov, G. A., Koblik, E. A., Red’kin, Y. A. & Badyaev, A. V. Extensive phenotypic diversification coexists with little genetic divergence and a lack of population structure in the White Wagtail subspecies complex (Motacilla alba). J. Evol. Biol. 31, 1093–1108, https://doi.org/10.1111/jeb.13305 (2018).

    Article  PubMed  Google Scholar 

  • 58.

    Johnsen, A., Kearns, A. M., Omland, K. E. & Anmarkrud, J. A. Sequencing of the complete mitochondrial genome of the common raven Corvus corax (Aves: Corvidae) confirms mitogenome-wide deep lineages and a paraphyletic relationship with the Chihuahuan raven C. cryptoleucus. PLoS One 12, e0187316, https://doi.org/10.1371/journal.pone.0187316 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-03294-w (2018).

  • 60.

    Palacios, C. et al. Shallow genetic divergence and distinct phenotypic differences between two Andean hummingbirds: Speciation with gene flow? The Auk 136, ukz046 (2019).

    Google Scholar 

  • 61.

    Wang, K. et al. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Commun. Biol. 1, 169, https://doi.org/10.1038/s42003-018-0176-6 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Wang, W. et al. Past hybridization between two East Asian long-tailed tits (Aegithalos bonvaloti and A. fuliginosus). Front. Zool. 11, 40 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    McKay, B. D. & Zink, R. M. The causes of mitochondrial DNA gene tree paraphyly in birds. Mol. Phylogenet. Evol. 54, 647–650 (2010).

    PubMed  Google Scholar 

  • 64.

    Choleva, L. et al. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS One 9, e80641, https://doi.org/10.1371/journal.pone.0080641 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    He, S. et al. An examination of introgression and incomplete lineage sorting among three closely related species of chocolate-dipped damselfish (genus: Chromis). Ecol. Evol. 9, 5468–5478, https://doi.org/10.1002/ece3.5142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Li, S., Luo, A., Li, G. & Li, W. Complete mitochondrial genome of the isabelline wheatear Oenanthe isabellina (Passeriformes, Muscicapidae). Mitochondrial DNA Part B 1, 355–356, https://doi.org/10.1080/23802359.2016.1167641 (2016).

    Article  Google Scholar 

  • 67.

    Sambrook, J., Fritsch, E. & Maniatis, T. Molecular cloning: A laboratory manual+ Cold Spring Harbor. (New York: Cold spring harbor laboratory press, 1989).

  • 68.

    van Oosten, H. H., Mueller, J. C., Ottenburghs, J., Both, C. & Kempenaers, B. Genetic structure among remnant populations of a migratory passerine, the Northern Wheatear Oenanthe oenanthe. Ibis 158, 857–867 (2016).

    Google Scholar 

  • 69.

    Randler, C. et al. Phylogeography, pre-zygotic isolation and taxonomic status in the endemic Cyprus Wheatear Oenanthe cypriaca. J. Ornitol. 153, 303–312 (2012).

    Google Scholar 

  • 70.

    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic. Acids. Res. 41, e129–e129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Chevreux, B., Wetter, T. & Suhai, S. in German conference on bioinformatics. 45-56 (Citeseer).

  • 72.

    Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 44, W54–57, https://doi.org/10.1093/nar/gkw413 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539 (2004).

    PubMed  Google Scholar 

  • 74.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Vaidya, G., Lohman, D. J. & Meier, R. J. C. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    Google Scholar 

  • 76.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).

    Google Scholar 

  • 77.

    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  PubMed  Google Scholar 

  • 78.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Altekar, G., Dwarkadas, S., Huelsenbeck, J. P. & Ronquist, F. Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415 (2004).

    CAS  PubMed  Google Scholar 

  • 80.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 81.

    Suchard, M. A. & Rambaut, A. Many-core algorithms for statistical phylogenetics. Bioinformatics 25, 1370–1376 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Lanave, C., Preparata, G., Sacone, C. & Serio, G. A new method for calculating evolutionary substitution rates. J. Mol. Evol. 20, 86–93 (1984).

    ADS  CAS  PubMed  Google Scholar 

  • 83.

    Weir, J. T. & Schluter, D. Calibrating the avian molecular clock. Mol. Ecol. 17, 2321–2328, https://doi.org/10.1111/j.1365-294X.2008.03742.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Biol. Resour. 10, 564–567 (2010).

    Google Scholar 

  • 85.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations