Segawa, T. et al. Bipolar dispersal of red-snow algae. Nat. Commun. 9, 3094. https://doi.org/10.1038/s41467-018-05521-w (2018).
Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (New York, N.Y.) 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).
Dunthorn, M., Stoeck, T., Wolf, K., Breiner, H.-W. & Foissner, W. Diversity and endemism of ciliates inhabiting Neotropical phytotelmata. Syst. Biodivers. 10, 195–205. https://doi.org/10.1080/14772000.2012.685195 (2012).
Siver, P. A. & Lott, A. M. Biogeographic patterns in scaled chrysophytes from the east coast of North. America 57, 451–466. https://doi.org/10.1111/j.1365-2427.2011.02711.x (2012).
Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227. https://doi.org/10.1038/35012228 (2000).
Bass, D., Boenigk, J. & Fontaneto, D. In Biogeography of Microscopic Organisms (ed. Fontaneto, D.) 88–110 (Cambridge University Press, Cambridge, 2011).
Caron, D. A. Past President’s address: protistan biogeography: why all the fuss?. J. Eukaryot. Microbiol. 56, 105–112. https://doi.org/10.1111/j.1550-7408.2008.00381.x (2009).
Foissner, W. Biogeography and dispersal of micro-organisms: a review emphasizing protists (2006).
Coesel, P. F. M. & Krienitz, L. Diversity and geographic distribution of desmids and other coccoid green algae. Biodivers. Conserv. 17, 381–392. https://doi.org/10.1007/s10531-007-9256-5 (2008).
Darling, K. F. & Wade, C. M. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropaleontol. 67, 216–238. https://doi.org/10.1016/j.marmicro.2008.01.009 (2008).
Vanormelingen, P., Verleyen, E. & Vyverman, W. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers. Conserv. 17, 393–405. https://doi.org/10.1007/s10531-007-9257-4 (2008).
Stoeck, T., Bruemmer, F. & Foissner, W. Evidence for local ciliate endemism in an alpine anoxic lake. Microbiol. Ecol. 54, 478–486. https://doi.org/10.1007/s00248-007-9213-6 (2007).
Fernández, L. D., Hernández, C. E., Schiaffino, M. R., Izaguirre, I. & Lara, E. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes. FEMS Microbiol. Ecol. 93, 37. https://doi.org/10.1093/femsec/fix125 (2017).
Filker, S., Sommaruga, R., Vila, I. & Stoeck, T. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol. Ecol. 25, 2286–2301. https://doi.org/10.1111/mec.13633 (2016).
de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. https://doi.org/10.1126/science.1261605 (2015).
Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084-1097.e21. https://doi.org/10.1016/j.cell.2019.10.008 (2019).
Bock, C., Salcher, M., Jensen, M., Pandey, R. V. & Boenigk, J. Synchrony of eukaryotic and prokaryotic planktonic communities in three seasonally sampled Austrian lakes. Front. Microbiol. 9, 1290. https://doi.org/10.3389/fmicb.2018.01290 (2018).
Boenigk, J. et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding and Metagenomics 2, e21519. https://doi.org/10.3897/mbmg.2.21519 (2018).
He, F. et al. Elevation, aspect, and local environment jointly determine diatom and macroinvertebrate diversity in the Cangshan Mountain, Southwest China. Ecol. Indic. 108, 105618. https://doi.org/10.1016/j.ecolind.2019.105618 (2020).
Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202. https://doi.org/10.1890/14-0310.1 (2014).
Bryant, J. A. et al. Colloquium paper: microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. USA 105(Suppl 1), 11505–11511. https://doi.org/10.1073/pnas.0801920105 (2008).
McCain, C. M. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecol. Biogeogr. 16, 1–13. https://doi.org/10.1111/j.1466-8238.2006.00263.x (2007).
Desmond, A. Janet Browne, The secular ark. Studies in the history of biogeography, New Haven, Conn., and London, Yale University Press, 1983, 8vo, pp. x, 273, illus., £21.00. Med. Hist. 27, 452–453. https://doi.org/10.1017/s0025727300043611 (1983).
Nemcová, Y., Kreidlová, J., Kosová, A. & Neustupa, J. Lakes and pools of Aquitaine region (France)—a biodiversity hotspot of Synurales in Europe. Nova Hedw 95, 1–24. https://doi.org/10.1127/0029-5035/2012/0036 (2012).
van de Vijver, B., Gremmen, N. J. M. & Beyens, L. The genus Stauroneis (Bacillariophyceae) in the Antarctic region. J. Biogeogr. 32, 1791–1798. https://doi.org/10.1111/j.1365-2699.2005.01325.x (2005).
Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112. https://doi.org/10.1038/nrmicro1341 (2006).
Lepère, C. et al. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85, 85–94. https://doi.org/10.1111/1574-6941.12100 (2013).
Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750. https://doi.org/10.1038/nature03034 (2004).
Lara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D. M. & Mitchell, E. A. D. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532. https://doi.org/10.1111/jbi.12660 (2016).
Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA 106, 9322–9327. https://doi.org/10.1073/pnas.0810306106 (2009).
Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. https://doi.org/10.1038/nature03850 (2005).
Schmitt, T. Biogeographical and evolutionary importance of the European high mountain systems. Front. Zool. 6, 9. https://doi.org/10.1186/1742-9994-6-9 (2009).
Vimercati, L., Darcy, J. L. & Schmidt, S. K. The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Sci. Rep. 9, 10676. https://doi.org/10.1038/s41598-019-46521-0 (2019).
McCain, C. M. Elevational gradients in diversity of small mammals. Ecology 86, 366–372. https://doi.org/10.1890/03-3147 (2005).
Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 113, E1516–E1525. https://doi.org/10.1073/pnas.1509523113 (2016).
Khomich, M., Kauserud, H., Logares, R., Rasconi, S. & Andersen, T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw231 (2017).
Škaloud, P. et al. Speciation in protists: Spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol. Ecol. 28, 1084–1095. https://doi.org/10.1111/mec.15011 (2019).
Godhe, A., McQuoid, M. R., Karunasagar, I., Karunasagar, I. & Rehnstam-Holm, A.-S. Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi sarno et zingone (Bacillariophyceae). J. Phycol. 42, 280–291. https://doi.org/10.1111/j.1529-8817.2006.00197.x (2006).
Jobst, J., King, K. & Hemleben, V. Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family cucurbitaceae. Mol. Phylogenet. Evol. 9, 204–219. https://doi.org/10.1006/mpev.1997.0465 (1998).
Lobo-Hajdu, G. Intragenomic, intra- and interspecific variation in the rDNA its of Porifera revealed by PCR-singlestrand conformation polymorphism (PCR-SSCP). Bollettino dei Musei e degli Istituti Biologici 68, 413–423 (2004).
Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629. https://doi.org/10.1038/ismej.2017.29 (2017).
Derot, J. et al. Response of phytoplankton traits to environmental variables in French lakes: new perspectives for bioindication. Ecol. Indic. 108, 105659. https://doi.org/10.1016/j.ecolind.2019.105659 (2020).
Boo, S. M. et al. Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Mol. Ecol. 19, 4328–4338. https://doi.org/10.1111/j.1365-294X.2010.04813.x (2010).
Foissner, W. & Hawksworth, D. L. (eds) Protist Diversity and Geographical Distribution (Springer, Dordrecht, 2009).
Schiaffino, M. R. et al. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18, 5249–5264. https://doi.org/10.1111/1462-2920.13566 (2016).
Boenigk, J. et al. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl. Environ. Microbiol. 72, 5159–5164. https://doi.org/10.1128/AEM.00601-06 (2006).
Foissner, W., Chao, A. & Katz, L. A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17, 345–363. https://doi.org/10.1007/s10531-007-9254-7 (2008).
Payo, D. A. et al. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc. R. Soc. B 280, 20122660. https://doi.org/10.1098/rspb.2012.2660 (2013).
Siver, P. A., Skogstad, A. & Nemcová, Y. Endemism, palaeoendemism and migration: the case for the ‘European endemic’, Mallomonas intermedia. Eur. J. Phycol. 54, 222–234. https://doi.org/10.1080/09670262.2018.1544377 (2019).
Cox, F., Newsham, K. K. & Robinson, C. H. Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environ. Microbiol. 21, 1586–1596. https://doi.org/10.1111/1462-2920.14533 (2019).
Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453. https://doi.org/10.1111/j.1529-8817.2004.03117.x (2004).
Logares, R. et al. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 17, 414–422. https://doi.org/10.1016/j.tim.2009.05.010 (2009).
Hewitt, G. M. The structure of biodiversity—insights from molecular phylogeography. Front. Zool. 1, 4. https://doi.org/10.1186/1742-9994-1-4 (2004).
Vetaas, O. R. & Grytnes, J.-A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).
Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219. https://doi.org/10.1038/nature06812 (2008).
Catalán, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551–584 (2006).
Sommaruga, R. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B Biol. 62, 35–42. https://doi.org/10.1016/S1011-1344(01)00154-3 (2001).
Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391. https://doi.org/10.4319/lo.1995.40.8.1381 (1995).
Sommaruga, R. & Augustin, G. Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat. Sci. 68, 129–141. https://doi.org/10.1007/s00027-006-0836-3 (2006).
Catalan, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnética 25, 551–584 (2006).
Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 302. https://doi.org/10.1038/s41598-018-22835-3 (2018).
Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 91, 429. https://doi.org/10.1093/femsec/fiv010 (2015).
Tartarotti, B. et al. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes. J. Plankton Res. 36, 557–566. https://doi.org/10.1093/plankt/fbt109 (2014).
Brettum, P. & Halvorsen, G. The phytoplankton of Lake Atnsjøen, Norway—a long-term investigation. Hydrobiologia 521, 141–147. https://doi.org/10.1023/B:HYDR.0000026356.09421.e3 (2004).
Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509. https://doi.org/10.1038/nature08179 (2009).
Bergström, A.-K., Karlsson, D., Karlsson, J. & Vrede, T. N-limited consumer growth and low nutrient regeneration N: P ratios in lakes with low N deposition. Ecosphere 6, 9. https://doi.org/10.1890/ES14-00333.1 (2015).
Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390. https://doi.org/10.1007/s13280-019-01227-5 (2020).
Gustafsson, B. G. & Westman, P. On the causes for salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography 17, 12-1-12–14. https://doi.org/10.1029/2000PA000572 (2002).
Filker, S., Kühner, S., Heckwolf, M., Dierking, J. & Stoeck, T. A fundamental difference between macrobiota and microbial eukaryotes: protistan plankton has a species maximum in the freshwater-marine transition zone of the Baltic Sea. Environ. Microbiol. 21, 603–617. https://doi.org/10.1111/1462-2920.14502 (2019).
Schiewer, U. In Ecology of Baltic Coastal Waters (ed. Schiewer, U.) 395–417 (Springer, Berlin, 2008).
Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science (New York, N.Y.) 305, 354–360. https://doi.org/10.1126/science.1095964 (2004).
Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F. & Vallina, S. M. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl. Acad. Sci. USA 112, 4239–4244. https://doi.org/10.1073/pnas.1412883112 (2015).
Rothschild, L. J. The influence of UV radiation on protistan evolution. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.1999.tb06074.x| (1999).
Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).
Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322. https://doi.org/10.1093/aob/mcp242 (2009).
Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227. https://doi.org/10.2307/2656714 (2000).
Nemcová, Y. & Pichrtova, M. Shape dynamics of silica scales (Chrysophyceae, Stramenopiles) associated with pH. Fottea 12, 281–291. https://doi.org/10.5507/fot.2012.020 (2012).
Leadbeater, B. S. C. & Green, J. C. Flagellates: Unity, Diversity and Evolution. Chapter 12: Functional Diversity of Heterotrophic Flagellates in Aquatic Ecosystems (CRC Press, Cambridge, 2000).
Lange, A. et al. AmpliconDuo: a split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10, e0141590. https://doi.org/10.1371/journal.pone.0141590 (2015).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).
Jensen, M. V9_Clust.R. R-Scrift for modifying DNA-sequence-abundance-tables: clustering of related sequences (e.g. SSU-ITS1) according to 100% identical subsequences. https://github.com/manfred-uni-essen/V9-cluster (2017).
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420. https://doi.org/10.7717/peerj.1420 (2015).
R Core Team. R: A language and environment for statistical computing (2019).
Hijmans, R. J. Spherical Trigonometry [R package geosphere version 1.5–10] (2019).
Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 (1952).
Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64. https://doi.org/10.1080/01621459.1961.10482090 (1961).
Source: Ecology - nature.com