
Hall, A. R. et al. Diversity–disturbance relationships: frequency and intensity interact. Biol. Lett. 8, 768–771 (2012).
Davies, K. W., Svejcar, T. J. & Bates, J. D. Interaction of historical and nonhistorical disturbances maintains native plant communities. Ecol. Appl. 19, 1536–1545 (2009).
Svensson, J. R., Lindegarth, M. & Pavia, H. Equal rates of disturbance cause different patterns of diversity. Ecology 90, 496–505 (2009).
Waples, R. S., Beechie, T. & Pess, G. R. Evolutionary history, habitat disturbance regimes, and anthropogenic changes: what do these mean for resilience of Pacific salmon populations? Ecol. Soc. 14, art3 (2009).
Ebeling, A. W., Laur, D. R. & Rowley, R. J. Severe storm disturbances and reversal of community structure in a southern California kelp forest. Mar. Biol. 84, 287–294 (1985).
Suding, K. N., Gross, K. L. & Houseman, G. R. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19, 46–53 (2004).
Reice, S. R. Nonequilibrium dynamics of biological community structure. Am. Sci. 82, 424–434 (1994).
Ebeling, A. W. & Hixon, M. A. Tropical and temperate reef fishes: comparison of community structures. In The Ecology of Fishes on Coral Reefs (ed. Sale, P. F.) 509–563 (Elsevier), https://doi.org/10.1016/B978-0-08-092551-6.50023-4 (1991).
Mumby, P. J. & Steneck, R. S. Coral reef management and conservation in light of rapidly evolving ecological paradigms. Trends Ecol. Evol. 23, 555–563 (2008).
Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).
Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science. 312, 1806–1809 (2006).
Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science. 293, 629–637 (2001).
Kemp, W. et al. Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).
Elmhirst, T., Connolly, S. R. & Hughes, T. P. Connectivity, regime shifts and the resilience of coral reefs. Coral Reefs 28, 949–957 (2009).
Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).
Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8, 6–22 (1998).
Steneck, R. S., Vavrinec, J. & Leland, A. V. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems 7, 323–332 (2004).
Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science. 265, 1547–1551 (1994).
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science. 353, 169–172 (2016).
McNutt, M. K. et al. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. 109, 20260–20267 (2012).
Deepwater Horizon Natural Resource Damage Assessment Trustees. Deepwater Horizon Oil Spill: Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental Impact Statement. (2016).
Valentine, D. L. et al. Fallout plume of submerged oil from Deepwater. Horizon. Proc. Natl. Acad. Sci. 111, 15906–15911 (2014).
Chanton, J. et al. Using natural abundance radiocarbon to trace the flux of petrocarbon to the seafloor following the deepwater horizon oil spill. Environ. Sci. Technol. 49, 847–854 (2015).
Passow, U. & Ziervogel, K. Marine snow sedimented oil released during the Deepwater Horizon spill. Oceanography 29, 118–125 (2016).
Hylland, K. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J. Toxicol. Environ. Heal. Part A 69, 109–123 (2006).
Hemmer, M. J., Barron, M. G. & Greene, R. M. Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ. Toxicol. Chem. 30, 2244–2252 (2011).
Holladay, S. D. et al. Benzo[a]pyrene-induced hypocellularity of the pronephros in tilapia (Oreochromis niloticus) is accompanied by alterations in stromal and parenchymal cells and by enhanced immune cell apoptosis. Vet. Immunol. Immunopathol. 64, 69–82 (1998).
Navas, J. M. & Segner, H. Antiestrogenicity of β-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. Aquat. Toxicol. 51, 79–92 (2000).
Rhodes, S., Farwell, A., Mark Hewitt, L., MacKinnon, M. & George Dixon, D. The effects of dimethylated and alkylated polycyclic aromatic hydrocarbons on the embryonic development of the Japanese medaka. Ecotoxicol. Environ. Saf. 60, 247–258 (2005).
Gilliers, C., Claireaux, G., Galois, R., Loizeau, V. & Pape, O. Le. Influence of hydrocarbons exposure on survival, growth and condition of juvenile flatfish: a mesocosm experiment. J. Life Sci. 4, 113–122 (2012).
Schlenker, L. S. et al. Damsels in distress: oil exposure modifies behavior and olfaction in bicolor damselfish (Stegastes partitus). Environ. Sci. Technol. 53, 10993–11001 (2019).
Stieglitz, J. D., Mager, E. M., Hoenig, R. H., Benetti, D. D. & Grosell, M. Impacts of Deepwater Horizon crude oil exposure on adult mahi-mahi (Coryphaena hippurus) swim performance. Environ. Toxicol. Chem. 35, 2613–2622 (2016).
Farr, J. A. Impairment of antipredator behavior in Palaemonetes pugio by exposure to sublethal doses of parathion. Trans. Am. Fish. Soc. 106, 37–41 (1977).
Whitehead, A. et al. Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proc. Natl. Acad. Sci. 109, 20298–20302 (2012).
Barron, M. G. Ecological impacts of the Deepwater Horizon oil spill: implications for immunotoxicity. Toxicol. Pathol. 40, 315–320 (2012).
Schwacke, L. H. et al. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Environ. Sci. Technol. 48, 93–103 (2014).
Murawski, S. A., Hogarth, W. T., Peebles, E. B. & Barbeiri, L. Prevalence of external skin lesions and polycyclic aromatic hydrocarbon concentrations in Gulf of Mexico fishes, post-Deepwater Horizon. Trans. Am. Fish. Soc. 143, 1084–1097 (2014).
Moreno, R., Jover, L., Diez, C., Sardà, F. & Sanpera, C. Ten years after the Prestige oil spill: seabird trophic ecology as indicator of long-term effects on the coastal marine ecosystem. PLoS One 8, 1–10 (2013).
Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing. Proc. Natl. Acad. Sci. USA 102, 5443–5447 (2005).
Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 317, 207–233 (2003).
Beck, M. W. et al. The role of nearshore ecosystems as fish and shellfish nurseries. Issues Ecol. 2003, 1–12 (2003).
Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology, and Conservation. (Springer Netherlands (2006).
Able, K. W. et al. Fish assemblages in Louisiana salt marshes: effects of the Macondo oil spill. Estuaries and Coasts 38, 1385–1398 (2015).
Michel, J. et al. Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA. Plos One 8, e65087 (2013).
Silliman, B. R. et al. Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. Proc. Natl. Acad. Sci. 109, 11234–11239 (2012).
Fodrie, F. J. & Heck, K. L. Response of coastal fishes to the Gulf of Mexico oil disaster. Plos One 6 (2011).
Moody, R. M., Cebrian, J. & Heck, K. L. Interannual recruitment dynamics for resident and transient marsh species: evidence for a lack of impact by the Macondo oil spill. Plos One 8, 1–11 (2013).
Schaefer, J., Frazier, N. & Barr, J. Dynamics of near-coastal fish assemblages following the Deepwater Horizon oil spill in the northern Gulf of Mexico. Trans. Am. Fish. Soc. 145, 108–119 (2016).
Fodrie, F. J. et al. Integrating organismal and population responses of estuarine fishes in macondo spill research. Bioscience 64, 778–788 (2014).
Parsons, M. L., Morrison, W., Rabalais, N. N., Turner, R. E. & Tyre, K. N. Phytoplankton and the Macondo oil spill: A comparison of the 2010 phytoplankton assemblage to baseline conditions on the Louisiana shelf. Environ. Pollut. 207, 152–160 (2015).
Carassou, L., Hernandez, F. J. & Graham, W. M. Change and recovery of coastal mesozooplankton community structure during the Deepwater Horizon oil spill. Environ. Res. Lett. 9, 124003 (2014).
Abbriano, R. et al. Deepwater Horizon oil spill: a review of the planktonic response. Oceanography 24, 294–301 (2011).
Landers, S. C. et al. Meiofauna and trace metals from sediment collections in Florida after the deepwater horizon oil spill. Gulf Mex. Sci. 32, 1–10 (2014).
Cooksey, C. et al. Ecological Condition of Coastal Ocean Waters along the U.S. Continental Shelf of Northeastern Gulf of Mexico: 2010 (2014).
Roth, A. M. F. & Baltz, D. M. Short-term effects of an Oil spill on marsh-edge fishes and decapod crustaceans. Estuaries and Coasts 32, 565–572 (2009).
Paperno, R. et al. The disruption and recovery of fish communities in the Indian River Lagoon, Florida, following two hurricanes in 2004. Estuaries and Coasts 29, 1004–1010 (2006).
Soto, L. A., Botello, A. V., Licea-Durán, S., Lizárraga-Partida, M. L. & Yáñez-Arancibia, A. The environmental legacy of the Ixtoc-I oil spill in Campeche Sound, southwestern Gulf of Mexico. Front. Mar. Sci. 1, 1–9 (2014).
Murawski, S. A., Peebles, E. B., Gracia, A., Tunnell, J. W. & Armenteros, M. Comparative abundance, species composition, and demographics of continental shelf fish assemblages throughout the Gulf of Mexico. Mar. Coast. Fish. 10, 325–346 (2018).
Garner, S. B., Boswell, K. M., Lewis, J. P., Tarnecki, J. H. & Patterson, W. F. III. Effect of reef morphology and depth on fish community and trophic structure in the northcentral Gulf of Mexico. Estuar. Coast. Shelf Sci. 230, 106423 (2019).
Warner, R. R. & Chesson, P. L. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am. Nat. 125, 769–787 (1985).
Winemiller, K. O. & Rose, K. A. Patterns of life history diversification in North American fishes: implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).
Watterson, J. C., Patterson, W. F. III., Shipp, R. L. & Cowan, J. H. Movement of red snapper, Lutjanus campechanus, in the north central Gulf of Mexico: potential effects of hurricanes. Gulf Mex. Sci. 16, 92–104 (1998).
Tarnecki, J. H. & Patterson, W. F. III. Changes in red snapper diet and trophic ecology following the Deepwater Horizon oil spill. Mar. Coast. Fish. 7, 135–147 (2015).
McCrawley, J. R. & Cowan, J. H. J. Seasonal and size specific diet and prey demand of Red Snapper on Alabama artificial reefs: implications for management. In Red Snapper (Lutjanus campechanus) Ecology and Fisheries in the Gulf of Mexico (eds. Patterson III., W. F., Cowan, J. H. J., Fitzhugh, G. R. & Nieland, D. L.) 71–96 (American Fisheries Society (2007).
Snyder, S. M., Pulster, E. L., Wetzel, D. L. & Murawski, S. A. PAH exposure in Gulf of Mexico demersal fishes, post-Deepwater Horizon. Environ. Sci. Technol. 49, 8786–8795 (2015).
Ainsworth, C. H. et al. Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. Plos One 13, 1–21 (2018).
Herdter, E. S., Chambers, D. P., Stallings, C. D. & Murawski, S. A. Did the Deepwater Horizon oil spill affect growth of red snapper in the Gulf of Mexico? Fish. Res. 191, 60–68 (2017).
Patterson, W. F. III. et al. The utility of stable and radioisotopes in fish tissues as biogeochemical tracers of marine oil spill food web effects. In Scenarios and Responses to Future Deep Oil Spills (eds. Murawski, S. A. et al.) 219–238 (Springer International Publishing). https://doi.org/10.1007/978-3-030-12963-7_13 (2020).
Norberg, M. J. The ecology of tomtate, Haemulon aurolineatum, in the northern Gulf of Mexico and effects of the Deepwater Horizon oil spill. (University of South Alabama (2015).
Dahl, K. A., Patterson, W. F. III. & Snyder, R. Experimental assessment of lionfish removals to mitigate reef fish community shifts on northern Gulf of Mexico artificial reefs. Mar. Ecol. Prog. Ser. 558, 207–221 (2016).
Patterson, W. F. III., Tarnecki, J. H., Addis, D. T. & Barbieri, L. R. Reef fish community structure at natural versus artificial reefs in the northern Gulf of Mexico. Proc. 66th Gulf Caribb. Fish. InstituteGulf Caribb. Fish. Inst. (2014).
Thompson, M. J., Schroeder, W. W., Phillips, N. W. & Graham, B. D. Ecology of Live Bottom Habitats of the Northeastern Gulf of Mexico: A Community Profile Ecology of Live Bottom Habitats of the Northeastern Gulf of Mexico: A Community Profile. (1999).
Silva, M., Etnoyer, P. J. & MacDonald, I. R. Coral injuries observed at mesophotic reefs after the Deepwater Horizon oil discharge. Deep. Res. Part II Top. Stud. Oceanogr. 129, 96–107 (2016).
Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. J. Exp. Mar. Bio. Ecol. 330, 55–80 (2006).
Semmler, R. F., Hoot, W. C. & Reaka, M. L. Are mesophotic coral ecosystems distinct communities and can they serve as refugia for shallow reefs? Coral Reefs 36, 433–444 (2017).
Oksanen, J. F. et al. vegan: Community Ecology Package. (2018).
Team, R. core. R: A language and environment for statistical computing. (2018).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67 (2015).
Hothorn, T., Bretz, F., Westfall, P. & Heiberger, R. M. Multcomp: simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
Lo, N. C., Jacobson, L. D. & Squire, J. L. Indices of relative abundance from fish spotter data based on delta-lognornial models. Can. J. Fish. Aquat. Sci. 49, 2515–2526 (1992).
Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70, 141–159 (2004).
Chagaris, D., Allen, M. & Camp, E. Modeling temporal closures in a multispecies recreational fishery reveals tradeoffs associated with species seasonality and angler effort dynamics. Fish. Res. 210, 106–120 (2019).
Valentine, M. M. & Benfield, M. C. Characterization of epibenthic and demersal megafauna at Mississippi Canyon 252 shortly after the Deepwater Horizon oil spill. Mar. Pollut. Bull. 77, 196–209 (2013).
Montagna, P. A. et al. Deep-sea benthic footprint of the Deepwater Horizon blowout. Plos One 8 (2013).
Hastings, D. W. et al. Changes in sediment redox conditions following the BP DWH blowout event. Deep. Res. Part II Top. Stud. Oceanogr. 129, 167–178 (2016).
Felder, D. L. et al. Seaweeds and decapod crustaceans on gulf deep banks after the macondo oil spill. Bioscience 64, 808–819 (2014).
Jones, K. M. M. Home range areas and activity centres in six species of Caribbean wrasses (Labridae). J. Fish Biol. 66, 150–166 (2005).
Ortmann, A. C. et al. Dispersed oil disrupts microbial pathways in pelagic food webs. Plos One 7, 1–9 (2012).
Paul, J. H. et al. Toxicity and mutagenicity of Gulf of Mexico waters during and after the Deepwater Horizon oil spill. Environ. Sci. Technol. 47, 9651–9659 (2013).
Milinkovitch, T. et al. The effect of hypoxia and hydrocarbons on the anti-predator performance of European sea bass (Dicentrarchus labrax). Environ. Pollut. 251, 581–590 (2019).
Coleman, F. C., Scanlon, K. M. & Koenig, C. C. Groupers on the edge: shelf edge spawning habitat in and around marine reserves of the northeastern Gulf of Mexico. Prof. Geogr. 63, 456–474 (2011).
Addis, D. T., Patterson, W. F. III., Dance, M. A. & Ingram, G. W. Implications of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fish. Res. 147, 349–358 (2013).
Charnov, E. L., Orians, G. H. & Hyatt, K. Ecological implications of resource depression. Am. Nat. 110, 247–259 (1976).
Werner, E. E. & Gilliam, J. F. The ontogenetic niche and species interactions in size-structured populations. Annu. Rev. Ecol. Syst. 15, 393–425 (1984).
Kirby-Smith, W. W. & Ustach, J. Resistance to hurricane disturbance of an epifaunal community on the continental shelf off North Carolina. Estuar. Coast. Shelf Sci. 23, 433–442 (1986).
Bell, M. & Hall, J. W. Effects of hurricane Hugo on South Carolina’s marine artificial reefs. Bull. Mar. Sci. 55, 836–847 (1994).
Smith, G. B. Relationship of eastern Gulf of Mexico reef-fish communities to the species equilibrium theory of insular biogeography. J. Biogeogr. 6, 49 (1979).
Dupont, J. M., Hallock, P. & Jaap, W. C. Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar. Ecol. Prog. Ser. 415, 189–200 (2010).
Driggers, W. B. et al. Environmental conditions and catch rates of predatory fishes associated with a mass mortality on the West Florida Shelf. Estuar. Coast. Shelf Sci. 168, 40–49 (2016).
Steidinger, K. A. & Ingle, R. M. Observations on the 1971 summer red tide in Tampa Bay, Florida. Environ. Lett. 3, 271–278 (1972).
Ogden, J. & Ebersole, J. Scale and Community Structure of Coral Reef Fishes: A Long-Term Study of a Large Artificial Reef. Mar. Ecol. Prog. Ser. 4, 97–103 (1981).
Smith, L. Small rotenone stations: a tool for studying coral reef fish communities. Am. Museum Nat. Hist. 1 (1973).
Dayton, P. K. Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecol. Monogr. 45, 137–159 (1975).
Farrell, T. M. Models and mechanisms of succession: an example from a rocky intertidal community. Ecol. Monogr. 61, 95–113 (1991).
Peterson, C. H. et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science. 302, 2082–2086 (2003).
Schwing, P. T. et al. Constraining the spatial extent of marine oil snow sedimentation and flocculent accumulation following the Deepwater Horizon event using an excess 210Pb flux approach. Environ. Sci. Technol. 51, 5962–5968 (2017).
Romero, I. C. et al. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ. Pollut. 228, 179–189 (2017).
Smeltz, M. et al. A multi-year study of hepatic biomarkers in coastal fishes from the Gulf of Mexico after the Deepwater Horizon oil spill. Mar. Environ. Res. 129, 57–67 (2017).
Graham, W. M. et al. Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environ. Res. Lett. 5 (2010).
Green, S. J., Akins, J. L., Maljković, A. & Côté, I. M. Invasive lionfish drive Atlantic coral reef fish declines. Plos One 7, e32596 (2012).
Albins, M. A. Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar. Ecol. Prog. Ser. 522, 231–243 (2015).
Dahl, K. A. & Patterson, W. F. III. Habitat-specific density and diet of rapidly expanding invasive red lionfish, Pterois volitans, populations in the northern Gulf of Mexico. Plos One 9, e105852 (2014).
Albins, M. A. & Hixon, M. A. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367, 233–238 (2008).
Raymond, W. W., Albins, M. A. & Pusack, T. J. Competitive interactions for shelter between invasive Pacific red lionfish and native Nassau grouper. Environ. Biol. Fishes 98, 57–65 (2015).
Albins, M. A. Effects of invasive Pacific red lionfish Pterois volitans versus a native predator on Bahamian coral-reef fish communities. Biol. Invasions 15, 29–43 (2013).
Dahl, K. A., Patterson, W. F. III., Robertson, A. & Ortmann, A. C. DNA barcoding significantly improves resolution of invasive lionfish diet in the northern Gulf of Mexico. Biol. Invasions 19, 1917–1933 (2017).
Chagaris, D. et al. An ecosystem-based approach to evaluating impacts and management of invasive lionfish. Fisheries 42, 421–431 (2017).
Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).
National Marine Fisheries Service. Fisheries Economics of the United States, 2010. (2011).
Holland, S. M. & Ditton, R. B. Fishing trip satisfaction: a typology of anglers. North Am. J. Fish. Manag. 12, 28–33 (1992).
Source: Ecology - nature.com