in

Chaotic genetic structure and past demographic expansion of the invasive gastropod Tritia neritea in its native range, the Mediterranean Sea

  • 1.

    Carlton, J. T. Pattern, process, and prediction in marine invasion ecology. Biol. Conserv. 78, 97–106. https://doi.org/10.1016/0006-3207(96)00020-1 (1996).

    Article  Google Scholar 

  • 2.

    Stepien, C. A., Brown, J. E., Neilson, M. E. & Tumeo, M. A. Genetic diversity of invasive species in the Great Lakes versus their Eurasian source populations: insights for risk analysis. Risk Anal. 25, 1043–1060. https://doi.org/10.1111/j.1539-6924.2005.00655.x (2005).

    Article  PubMed  Google Scholar 

  • 3.

    Geller, J. B., Darling, J. A. & Carlton, J. T. Genetic perspectives on marine biological invasions. Annu. Rev. Mar. Sci. 2, 367–393. https://doi.org/10.1146/annurev.marine.010908.163745 (2010).

    ADS  Article  Google Scholar 

  • 4.

    Estoup, A. & Guillemaud, T. Reconstructing routes of invasion using genetic data: why, how and so what?. Mol. Ecol. 19, 4113–4130. https://doi.org/10.1111/j.1365-294X.2010.04773.x (2010).

    Article  PubMed  Google Scholar 

  • 5.

    Hudson, J., Viard, F., Roby, C. & Rius, M. Anthropogenic transport of species across native ranges: unpredictable genetic and evolutionary consequences. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 6.

    Carlton, J. T. Biological invasions and cryptogenic species. Ecology 77, 1653–1655. https://doi.org/10.2307/2265767 (1996).

    Article  Google Scholar 

  • 7.

    Holland, B. S. Genetics of marine bioinvasions. Hydrobiologia 420, 63–71. https://doi.org/10.1023/a:1003929519809 (2000).

    CAS  Article  Google Scholar 

  • 8.

    Reitzel, A. M., Herrera, S., Layden, M. J., Martindale, M. Q. & Shank, T. M. Going where traditional markers have not gone before: utility of and promise for RAD sequencing in marine invertebrate phylogeography and population genomics. Mol. Ecol. 22, 2953–2970. https://doi.org/10.1111/mec.12228 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Darling, J. A. et al. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Mar. Pol. 85, 54–64. https://doi.org/10.1016/j.marpol.2017.08.014 (2017).

    Article  Google Scholar 

  • 10.

    Palumbi, S. R. Genetic-divergence, reproductive isolation, and marine speciation. Annu. Rev. Ecol. Syst. 25, 547–572. https://doi.org/10.1146/annurev.ecolsys.25.1.547 (1994).

    Article  Google Scholar 

  • 11.

    Kelly, R. P. & Palumbi, S. R. Genetic Structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS ONE 5, 13. https://doi.org/10.1371/journal.pone.0008594 (2010).

    CAS  Article  Google Scholar 

  • 12.

    Boissin, E., Stohr, S. & Chenuil, A. Did vicariance and adaptation drive cryptic speciation and evolution of brooding in Ophioderma longicauda (Echinodermata: Ophiuroidea), a common Atlanto-Mediterranean ophiuroid?. Mol. Ecol. 20, 4737–4755. https://doi.org/10.1111/j.1365-294X.2011.05309.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 13.

    Selkoe, K. A. & Toonen, R. J. Marine connectivity: a new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305. https://doi.org/10.3354/meps09238 (2011).

    ADS  Article  Google Scholar 

  • 14.

    Stewart, J. R. & Lister, A. M. Cryptic northern refugia and the origins of the modern biota. Trends Ecol. Evol. 16, 608–613. https://doi.org/10.1016/s0169-5347(01)02338-2 (2001).

    Article  Google Scholar 

  • 15.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).

    CAS  Article  Google Scholar 

  • 16.

    Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).

    Article  PubMed  Google Scholar 

  • 17.

    Carlton, J. T. & Geller, J. B. Ecological roulette—the global transport of nonindigenous marine organisms. Science 261, 78–82. https://doi.org/10.1126/science.261.5117.78 (1993).

    ADS  Article  Google Scholar 

  • 18.

    Ruiz, G. M., Fofonoff, P. W., Carlton, J. T., Wonham, M. J. & Hines, A. H. Invasion of coastal marine communities in North America: apparent patterns, processes, and biases. Annu. Rev. Ecol. Syst. 31, 481–531. https://doi.org/10.1146/annurev.ecolsys.31.1.481 (2000).

    Article  Google Scholar 

  • 19.

    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492. https://doi.org/10.1890/070064 (2008).

    Article  Google Scholar 

  • 20.

    Morton, J. The habits of Cyclope neritea, a style-bearing stenoglossan gastropod. Proc. Malacol. Soc. Lond. 34, 96–105 (1960).

    Google Scholar 

  • 21.

    Gomoiu, M. T. Biologisches Studium der Arten Nassa reticulata L. und Cyclonassa neritea (L.) im Schwarzen Meer (rumänischer Küstenbereich). Rev. Roum. Biol. Ser. Zool. 9, 39–49 (1964).

    Google Scholar 

  • 22.

    Galindo, L. A., Puillandre, N., Utge, J., Lozouet, P. & Bouchet, P. The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Buccinoidea). Mol. Phylogenet. Evol. 99, 337–353. https://doi.org/10.1016/j.ympev.2016.03.019 (2016).

    Article  PubMed  Google Scholar 

  • 23.

    Poppe, G. & Goto, Y. European Seashells Vol. 1 (Vera Christa Hemmen, Germany, 1991).

    Google Scholar 

  • 24.

    Gofas, S., Moreno, D. & Salas, C. Moluscos Marinos de Andalucía. (Servicio de Publicaciones e Intercambio Científico, Universidad de Málaga., 2011).

  • 25.

    WoRMS. http://www.marinespecies.org/aphia.php?p=taxdetails&id=246140, accessed 28 January 2019 (2019).

  • 26.

    Pérès, J. M. & Picard, J. Nouveau manuel de bionomie benthique. Recl. Trav. Stn. Mar. Endoume 31, 5–137 (1964).

    Google Scholar 

  • 27.

    Mars, P. Recherches sur quelques étangs du littoral méditerranéen français et leurs faunes malacologiques. Vie et milieu supp. 20, 359 (1966).

    Google Scholar 

  • 28.

    Zaouali, J. Influence des facteurs thermiques et halins sur la faune malacologique de quelques lagunes tunisiennes (lac lchkeul, lac de Bizerte, lac de Tunis, mer de Bou Grara. Rapp. Comm. Int. Mer Medit. 23, 99–101 (1975).

    Google Scholar 

  • 29.

    UNEP/MAP-RAC/SPA. Handbook for Interpreting Types of Marine Habitat for the Selection of Sites to be Included in the National Inventories of Natural Sites of Conservation Interest (Bellan-Santini D, Bellan G, Ghazi Bitar G, Harmelin J-G, Pergent ) 217 (2007).

  • 30.

    Russo, P. Lagoon malacofauna: results of malacological research in the Venice Lagoon. Boll. Malacol. 53, 49–62 (2017).

    Google Scholar 

  • 31.

    Nobre, A. Moluscos Marinhos de Portugal (Imprensa Portuguesa, Porto, 1931).

    Google Scholar 

  • 32.

    Grossu, A. V. Gastropoda Prosobranchia şi Opisthobranchia. Fauna Republicii Populare Române. Mollusca, Bucureşti, 3, fasc. 2, p 220. (1956).

  • 33.

    Parenzan, P. Carta d’identità delle conchiglie del Mediterraneo. Volume Primo. Gasteropodi. Bios Taras, Taranto, 283 (1970).

  • 34.

    Sauriau, P. G. Spread of cyclope-neritea (mollusca, gastropoda) along the north-eastern Atlantic coasts in relation to oyster culture and to climatic fluctuations. Mar. Biol. 109, 299–309. https://doi.org/10.1007/bf01319398 (1991).

    Article  Google Scholar 

  • 35.

    Anistratenko, V., Khaliman, I. & Anistratenko, O. The Molluscs of the Sea of Azov, Naukova Dumka, p 186. ISBN: 978-966-00-1112-0. (2011).

  • 36.

    Revkov, N. et al. in BSC, State of the Environment of the Black Sea (20012006/7) 243–290. (Black Sea Commission Publications 2008-3, 2008).

  • 37.

    Gili, C. & Martinell, J. Phylogeny, speciation and species turnover. The case of the Mediterranean gastropods of genus Cyclope Risso, 1826. Lethaia 33, 236–250. https://doi.org/10.1080/00241160025100080 (2000).

    Article  Google Scholar 

  • 38.

    Sabelli, B. & Taviani, M. In The Mediterranean Sea: Its History and Present Challenges (eds Goffredo, S. & Dubinsky, Z.) 285–306 (Springer, Dordrecht, 2014).

    Google Scholar 

  • 39.

    Borsa, P. et al. Infraspecific zoogeography of the Mediterranean: population genetic analysis on sixteen atlanto-mediterranean species (fishes and invertebrates). Vie Milieu 47, 295–305 (1997).

    Google Scholar 

  • 40.

    Bremer, J. R. A., Vinas, J., Mejuto, J., Ely, B. & Pla, C. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol. Phylogenet. Evol. 36, 169–187. https://doi.org/10.1016/j.ympev.2004.12.011 (2005).

    CAS  Article  Google Scholar 

  • 41.

    Patarnello, T., Volckaert, F. & Castilho, R. Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444. https://doi.org/10.1111/j.1365-294X.2007.03477.x (2007).

    Article  PubMed  Google Scholar 

  • 42.

    Maggs, C. A. et al. Evaluating signatures of glacial refugia for north Atlantic benthic marine taxa. Ecology 89, S108–S122. https://doi.org/10.1890/08-0257.1 (2008).

    Article  PubMed  Google Scholar 

  • 43.

    Rolán, E. D. Especies más de moluscos mediterráneos introducidos en la bahía de O Grove. Thalassas 10, 135 (1992).

    ADS  Google Scholar 

  • 44.

    Bachelet, G., Cazaux, C., Gantès, H. & Labourg, P. Contribution à l’étude de la faune marine de la région d’Arcachon. Bull. Cent. Etudes Rech. Sci. Biarritz IX, 45–64 (1980).

    Google Scholar 

  • 45.

    Bachelet, G. et al. Invasion of the eastern Bay of Biscay by the nassariid gastropod Cyclope neritea: origin and effects on resident fauna. Mar. Ecol. Prog. Ser. 276, 147–159. https://doi.org/10.3354/meps276147 (2004).

    ADS  Article  Google Scholar 

  • 46.

    Simon-Bouhet, B., Garcia-Meunier, P. & Viard, F. Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data. Mol. Ecol. 15, 1699–1711. https://doi.org/10.1111/j.1365-294X.2006.02881.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 47.

    Couceiro, L., Miguez, A., Ruiz, J. M. & Barreiro, R. Introduced status of Cyclope neritea (Gastropoda, Nassariidae) in the NW Iberian Peninsula confirmed by mitochondrial sequence data. Mar. Ecol. Prog. Ser. 354, 141–146. https://doi.org/10.3354/meps07257 (2008).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Simon-Bouhet, B., Daguin, C., Garcia-Meunier, P. & Viard, F. Polymorphic microsatellites for the study of newly established populations of the gastropod Cyclope neritea. Mol. Ecol. Notes 5, 121–123. https://doi.org/10.1111/j.1471-8286.2005.00857.x (2005).

    CAS  Article  Google Scholar 

  • 49.

    Aissaoui, C., Galindo, L. A., Puillandre, N. & Bouchet, P. The nassariids from the Gulf of Gabes revisited (Neogastropoda, Nassariidae). Mar. Biol. Res. 13, 370–389. https://doi.org/10.1080/17451000.2016.1273528 (2017).

    Article  Google Scholar 

  • 50.

    Knowlton, N. & Jackson, J. Inbreeding and outbreeding in marine invertebrates. In The Natural History of Inbreeding and Outbreeding: Theoretical and Empirical Perspectives (ed. Thornhill, N. W.) 200–249 (University of Chicago Press, Chicago, 1993).

    Google Scholar 

  • 51.

    Cahill, A. E. & Levinton, J. S. Genetic differentiation and reduced genetic diversity at the northern range edge of two species with different dispersal modes. Mol. Ecol. 25, 515–526. https://doi.org/10.1111/mec.13497 (2016).

    Article  PubMed  Google Scholar 

  • 52.

    Cahill, A. E. & Viard, F. Genetic structure in native and non-native populations of the direct-developing gastropod Crepidula convexa. Mar. Biol. 161, 2433–2443. https://doi.org/10.1007/s00227-014-2519-2 (2014).

    Article  Google Scholar 

  • 53.

    Boissin, E. et al. Contemporary genetic structure and postglacial demographic history of the black scorpionfish, Scorpaena porcus, in the Mediterranean and the Black Seas. Mol. Ecol. 25, 2195–2209. https://doi.org/10.1111/mec.13616 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Simon-Bouhet, B. Expansion d’aire et processus d’introductions biologiques en milieu marin: le cas de Cyclope neritea (Nassariidae) sur les côtes françaises. Thèse de Doctorat, Université de La Rochelle, France, p. 248 (2006).

  • 55.

    Couceiro, L., Lopez, L., Ruiz, J. M. & Barreiro, R. Population structure and range expansion: the case of the invasive gastropod Cyclope neritea in northwest Iberian Peninsula. Integr. Zool. 7, 286–298. https://doi.org/10.1111/j.1749-4877.2012.00305.x (2012).

    Article  PubMed  Google Scholar 

  • 56.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583. https://doi.org/10.1641/b570707 (2007).

    Article  Google Scholar 

  • 57.

    Boissin, E., Hoareau, T. B. & Berrebi, P. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol. J. Linn. Soc. 102, 175–198. https://doi.org/10.1111/j.1095-8312.2010.01565.x (2011).

    Article  Google Scholar 

  • 58.

    Taviani, M. The Mediterranean benthos from Late Miocene up to Present: ten million years of dramatic climatic and geological vicissitudes. Biol. Mar. Mediterr. 9, 445–463 (2002).

    Google Scholar 

  • 59.

    Marino, I. A. M., Pujolar, J. M. & Zane, L. Reconciling deep calibration and demographic history: Bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758). PLoS ONE 6, 10. https://doi.org/10.1371/journal.pone.0028567 (2011).

    CAS  Article  Google Scholar 

  • 60.

    Grant, W. S., Liu, M., Gao, T. X. & Yanagimoto, T. Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol. Phylogenet. Evol. 65, 203–212. https://doi.org/10.1016/j.ympev.2012.06.006 (2012).

    Article  PubMed  Google Scholar 

  • 61.

    Silva, G., Horne, J. B. & Castilho, R. Anchovies go north and west without losing diversity: post-glacial range expansions in a small pelagic fish. J. Biogeogr. 41, 1171–1182. https://doi.org/10.1111/jbi.12275 (2014).

    Article  Google Scholar 

  • 62.

    Albaina, N., Olsen, J. L., Couceiro, L., Ruiz, J. M. & Barreiro, R. Recent history of the European Nassarius nitidus (Gastropoda): phylogeographic evidence of glacial refugia and colonization pathways. Mar. Biol. 159, 1871–1884. https://doi.org/10.1007/s00227-012-1975-9 (2012).

    Article  Google Scholar 

  • 63.

    Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40. https://doi.org/10.1016/j.earscirev.2018.10.013 (2018).

    ADS  Article  Google Scholar 

  • 64.

    Buyukmeric, Y. Postglacial floodings of the Marmara Sea: molluscs and sediments tell the story. Geomar. Lett. 36, 307–321. https://doi.org/10.1007/s00367-016-0446-6 (2016).

    ADS  Article  Google Scholar 

  • 65.

    Semikolennykh, D., Ignatov, E., Yanina T. & Arslanov, K. Malacofauna of the Kerch Strait during the Late Pleistocene-Holocene: paleogeographical analysis. In: IGCP 610 Fourth Plenary Conference and Field Trip, Tbilisi, Georgia, 2–9 October 2016, 149–152 (2016).

  • 66.

    Samadi, S., Lambourdiere, J., Hebert, P. & Boisselier-Dubayle, M. C. Polymorphic microsatellites for the study of adults, egg-masses and hatchlings of five Cerithium species (Gastropoda) from the Mediterranean sea. Mol. Ecol. Notes 1, 44–46. https://doi.org/10.1046/j.1471-8278.2000.00019.x (2001).

    CAS  Article  Google Scholar 

  • 67.

    Ribeiro, P. A., Branco, M., Hawkins, S. J. & Santos, A. M. Recent changes in the distribution of a marine gastropod, Patella rustica, across the Iberian Atlantic coast did not result in diminished genetic diversity or increased connectivity. J. Biogeogr. 37, 1782–1796. https://doi.org/10.1111/j.1365-2699.2010.02330.x (2010).

    Article  Google Scholar 

  • 68.

    Cossu, P. et al. Surviving at the edge of a fragmented range: patterns of genetic diversity in isolated populations of the endangered giant Mediterranean limpet (Patella ferruginea). Mar. Biol. 164, 18. https://doi.org/10.1007/s00227-017-3080-6 (2017).

    Article  Google Scholar 

  • 69.

    Dupont, L., Bernas, D. & Viard, F. Sex and genetic structure across age groups in populations of the European marine invasive mollusc, Crepidula fornicata L. (Gastropoda). Biol. J. Linn. Soc. 90, 365–374. https://doi.org/10.1111/j.1095-8312.2007.00731.x (2007).

    Article  Google Scholar 

  • 70.

    Paterno, M. et al. A genome-wide approach to the phylogeography of the mussel Mytilus galloprovincialis in the Adriatic and the Black Seas. Front. Mar. Sci. 6, 16. https://doi.org/10.3389/fmars.2019.00566 (2019).

    ADS  Article  Google Scholar 

  • 71.

    Hare, M. P., Karl, S. A. & Avise, J. C. Anonymous nuclear DNA markers in the American oyster and their implications for the heterozygote deficiency phenomenon in marine bivalves. Mol. Biol. Evol. 13, 334–345. https://doi.org/10.1093/oxfordjournals.molbev.a025593 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 72.

    Johnson, M. S. & Black, R. The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar. Biol. 79, 295–302. https://doi.org/10.1007/bf00393261 (1984).

    Article  Google Scholar 

  • 73.

    Mallet, A. L., Zouros, E., Gartnerkepkay, K. E., Freeman, K. R. & Dickie, L. M. Larval viability and heterozygote deficiency in populations of marine bivalves—evidence from pair matings of mussels. Mar. Biol. 87, 165–172. https://doi.org/10.1007/bf00539424 (1985).

    Article  Google Scholar 

  • 74.

    Boissin, E., Hoareau, T. B., Feral, J. P. & Chenuil, A. Extreme selfing rates in the cosmopolitan brittle star species complex Amphipholis squamata: data from progeny-array and heterozygote deficiency. Mar. Ecol. Prog. Ser. 361, 151–159. https://doi.org/10.3354/meps07411 (2008).

    ADS  CAS  Article  Google Scholar 

  • 75.

    Boissin, E., Egea, E., Feral, J. P. & Chenuil, A. Contrasting population genetic structures in Amphipholis squamata, a complex of brooding, self-reproducing sister species sharing life history traits. Mar. Ecol. Prog. Ser. 539, 165–177. https://doi.org/10.3354/meps11480 (2015).

    ADS  CAS  Article  Google Scholar 

  • 76.

    Dudu, A., Georgescu, S. E., Suciu, R., Dinischiotu, A. & Costache, M. Microsatelitte DNA variation in the black sea beluga sturgeon (Huso huso). Rom. Biotech. Lett. 13, 3779–3783 (2008).

    CAS  Google Scholar 

  • 77.

    Wilson, A. B. & Veraguth, I. E. The impact of Pleistocene glaciation across the range of a widespread European coastal species. Mol. Ecol. 19, 4535–4553. https://doi.org/10.1111/j.1365-294X.2010.04811.x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 78.

    Limborg, M. T. et al. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus). Heredity 109, 96–107. https://doi.org/10.1038/hdy.2012.18 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 79.

    Miralles, L., Juanes, F., Pardinas, A. F. & Garcia-Vazquez, E. Paleoclimate shaped bluefish structure in the northern hemisphere. Fisheries 39, 578–586. https://doi.org/10.1080/03632415.2014.976701 (2014).

    Article  Google Scholar 

  • 80.

    Magoulas, A., Castilho, R., Caetano, S., Marcato, S. & Patarnello, T. Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol. Phylogenet. Evol. 39, 734–746. https://doi.org/10.1016/j.ympev.2006.01.016 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 81.

    Durand, J. D., Blel, H., Shen, K. N., Koutrakis, E. T. & Guinand, B. Population genetic structure of Mugil cephalus in the Mediterranean and Black Seas: a single mitochondrial clade and many nuclear barriers. Mar. Ecol. Prog. Ser. 474, 243–261. https://doi.org/10.3354/meps10080 (2013).

    ADS  Article  Google Scholar 

  • 82.

    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, 20. https://doi.org/10.1371/journal.pone.0176419 (2017).

    CAS  Article  Google Scholar 

  • 83.

    Anderson, E. C. & Dunham, K. K. The influence of family groups on inferences made with the program Structure. Mol. Ecol. Resour. 8, 1219–1229. https://doi.org/10.1111/j.1755-0998.2008.02355.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Peterman, W., Brocato, E. R., Semlitsch, R. D. & Eggert, L. S. Reducing bias in population and landscape genetic inferences: the effects of sampling related individuals and multiple life stages. PeerJ 4, 19. https://doi.org/10.7717/peerj.1813 (2016).

    Article  Google Scholar 

  • 85.

    Waples, R. S. & Anderson, E. C. Purging putative siblings from population genetic data sets: a cautionary view. Mol. Ecol. 26, 1211–1224. https://doi.org/10.1111/mec.14022 (2017).

    Article  PubMed  Google Scholar 

  • 86.

    Fernandez, R., Lemer, S., McIntyre, E. & Giribet, G. Comparative phylogeography and population genetic structure of three widespread mollusc species in the Mediterranean and near Atlantic. Mar. Ecol. Evol. Perspect. 36, 701–715. https://doi.org/10.1111/maec.12178 (2015).

    Article  Google Scholar 

  • 87.

    Selwyn, J. D. et al. Kin-aggregations explain chaotic genetic patchiness, a commonly observed genetic pattern, in a marine fish. PLoS ONE 11, 11. https://doi.org/10.1371/journal.pone.0153381 (2016).

    CAS  Article  Google Scholar 

  • 88.

    Highsmith, R. C. Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Mar. Ecol. Prog. Ser. 25, 169–179. https://doi.org/10.3354/meps025169 (1985).

    ADS  Article  Google Scholar 

  • 89.

    Thiel, M. & Haye, P. A. In Oceanography and Marine Biology—An Annual Review Vol. 44 (eds Gibson, R. N. et al.) 323–429 (CRC Press-Taylor & Francis Group, Boca Raton, 2006).

    Google Scholar 

  • 90.

    Darras, H. & Aron, S. Introgression of mitochondrial DNA among lineages in a hybridogenetic ant. Biol. Lett. 11, 4. https://doi.org/10.1098/rsbl.2014.0971 (2015).

    ADS  Article  Google Scholar 

  • 91.

    Perea, S., Vukic, J., Sanda, R. & Doadrio, I. Ancient mitochondrial capture as factor promoting mitonuclear discordance in freshwater fishes: a case study in the genus Squalius (Actinopterygii, Cyprinidae) in Greece. PLoS ONE 11, 26. https://doi.org/10.1371/journal.pone.0166292 (2016).

    CAS  Article  Google Scholar 

  • 92.

    Markova, S., Dufresne, F., Manca, M. & Kotlik, P. Mitochondrial capture misleads about ecological speciation in the Daphnia pulex complex. PLoS ONE 8, 14. https://doi.org/10.1371/journal.pone.0069497 (2013).

    CAS  Article  Google Scholar 

  • 93.

    Rawson, P. D. & Hilbish, T. J. Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution 52, 100–108. https://doi.org/10.2307/2410924 (1998).

    Article  PubMed  Google Scholar 

  • 94.

    Azuma, N., Yamazaki, T. & Chiba, S. Mitochondrial and nuclear DNA analysis revealed a cryptic species and genetic introgression in Littorina sitkana (Mollusca, Gastropoda). Genetica 139, 1399–1408. https://doi.org/10.1007/s10709-012-9638-9 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 95.

    Rius, M. & Darling, J. A. How important is intraspecific genetic admixture to the success of colonising populations?. Trends Ecol. Evol. 29, 233–242. https://doi.org/10.1016/j.tree.2014.02.003 (2014).

    Article  PubMed  Google Scholar 

  • 96.

    Boissin, E., Hoareau, T. B., Postaire, B., Gravier-Bonnet, N. & Bourmaud, C. A. F. Cryptic diversity, low connectivity and suspected human-mediated dispersal among 17 widespread Indo-Pacific hydroid species of the south-western Indian Ocean. J. Biogeogr. 45, 2104–2117. https://doi.org/10.1111/jbi.13388 (2018).

    Article  Google Scholar 

  • 97.

    Boero, F. et al. CoCoNet: towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential. Scires-It 6, 1–95 (2016).

    Google Scholar 

  • 98.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 99.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).

    CAS  Article  Google Scholar 

  • 100.

    Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).

    CAS  Article  PubMed  Google Scholar 

  • 101.

    Nylander, J. MrAIC.pl. Program Distributed by the Author (Evolutionary Biology Centre, Uppsala University, Sweden, 2004).

    Google Scholar 

  • 102.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    CAS  Article  Google Scholar 

  • 103.

    Wilke, T., Schultheiss, R. & Albrecht, C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Am. Malacol. Bull. 27, 25–45 (2009).

    Article  Google Scholar 

  • 104.

    Stelbrink, B., Shirokaya, A. A., Foller, K., Wilke, T. & Albrecht, C. Origin and diversification of Lake Ohrid’s endemic acroloxid limpets: the role of geography and ecology. BMC Evol. Biol. 16, 13. https://doi.org/10.1186/s12862-016-0826-6 (2016).

    Article  Google Scholar 

  • 105.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).

    CAS  Article  Google Scholar 

  • 106.

    Panova, M., Makinen, T., Fokin, M., Andre, C. & Johannesson, K. Microsatellite cross-species amplification in the genus Littorina and detection of null alleles in Littorina saxatilis. J. Molluscan Stud. 74, 111–117. https://doi.org/10.1093/mollus/eym052 (2008).

    Article  Google Scholar 

  • 107.

    GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations, Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France) (1996–2004).

  • 108.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 109.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 110.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 111.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  Google Scholar 

  • 112.

    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 113.

    Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 114.

    Jones, O. R. & Wang, J. L. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x (2010).

    Article  PubMed  Google Scholar 

  • 115.

    Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 116.

    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034 (2002).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Amanda Hubbard honored with Secretary of Energy’s Appreciation Award

    Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences