in

Characterization of bacterial communities associated with the exotic and heavy metal tolerant wetland plant Spartina alterniflora

  • 1.

    Williams, S. L. & Grosholz, E. D. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuar. Coasts 31, 3–20 (2008).

    Article  Google Scholar 

  • 2.

    Blumenthal, D., Mitchell, C. E., Pysek, P. & Jarosik, V. Synergy between pathogen release and resource availability in plant invasion. Proc. Natl. Acad. Sci. U.S.A. 106, 7899–7904 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Jemaneh, Z. et al. Effects of Spartinaalterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4, 243 (2013).

    Google Scholar 

  • 4.

    Miché, L., Battistoni, F., Gemmer, S., Belghazi, M. & Reinhold-Hurek, B. Upregulation of jasmonate-inducible defense proteins and differential colonization of roots of Oryza sativa cultivars with the endophyte Azoarcus sp. Mol. Plant Microbe Interact. 19, 502–511 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 5.

    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).

    CAS  Article  Google Scholar 

  • 6.

    Sobariu, D. L. et al. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation. Nat. Biotechnol. 39, 125–134 (2016).

    Google Scholar 

  • 7.

    Förstner, U. & Wittmann, G. T. W. Metal Pollution in the Aquatic Environment (Springer, Berlin, 1983).

    Google Scholar 

  • 8.

    Watling, R. J. & Watling, H. R. Metal surveys in South African estuaries. I. Swartkops River. Water S A. 8, 26–35 (1982).

    CAS  Google Scholar 

  • 9.

    Singh, J. & Kalamdhad, A. S. Chemical speciation of heavy metals in compost and compost amended soil—a review. Int. J. Environ. Eng. Res. 2, 27–37 (2013).

    Google Scholar 

  • 10.

    Sun, Q., Ye, Z. H., Wang, X. R. & Wong, M. H. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J. Plant Physiol. 164, 1489–1498 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Phillips, D. P., Human, L. R. D. & Adams, J. B. Wetland plants as indicators of heavy metal contamination. Mar. Pollut. Bull. 92, 227–232 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Kloepper, J. W., Leong, J., Teintze, M. & Schroth, M. N. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286, 885–886 (1980).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Ma, Y., Prasad, M. N. V., Rajkumar, M. & Freitas, H. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol. Adv. 29, 248–258 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Wan, S., Pei, Q., Liu, J. & Zhou, H. X. The positive and negative effects of exotic Spartina alterniflora in China. Ecol. Eng. 35, 444–452 (2009).

    Article  Google Scholar 

  • 15.

    Zhang, Y., Huang, G., Wang, W., Chen, L. & Lin, G. Interactions between mangroves and exotic Spartina in an anthropogenically disturbed estuary in southern China. Ecology 93, 588–597 (2012).

    PubMed  Article  Google Scholar 

  • 16.

    Zhang, Q. et al. Abundance and composition of denitrifiers in response to Spartina alterniflora invasion in estuarine sediment. Can. J. Microbiol. 59, 825–836 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 17.

    Zhao, C., Liu, X., Bai, J., Fengchun, L. & Li, J. Impact of Spartina alterniflora on benthic macro-invertebrates communities on mangrove wetland in Xicungang Estuary, Guangxi. Biodivers. Sci. 22, 630–639 (2014).

    Article  Google Scholar 

  • 18.

    Youwei, H., Dan, L., Anyi, H., Han, W. & Jinsheng, C. Diversity of endophytic and rhizoplane bacterial communities associated with exotic Spartina alterniflora and native mangrove using Illumina amplicon sequencing. Can. J. Microbiol. 61, 723–733 (2015).

    Article  CAS  Google Scholar 

  • 19.

    Yu, R. L. & Hu, G. R. Speciation and ecological risk of heavy metals in sediments from Quanzhou bay. J. Huaqiao Univ. 29, 419–423 (2008).

    Google Scholar 

  • 20.

    Hu, G., Yu, R., Zhao, J. & Chen, L. Distribution and enrichment of acid-leachable heavy metals in the intertidal sediments from Quanzhou Bay, southeast coast of China. Environ. Monit. Assess. 173, 107–116 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Wu, Y. & Liu, R. The Plants’ Adaptability to Environment of Quanzhou Bay Estuary Wetland (Science Press, Beijing, 2011).

    Google Scholar 

  • 22.

    Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. 2014, 437684 (2014).

    Google Scholar 

  • 23.

    Zhu, J. et al. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 70, 134–139 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Björnsson, L., Hugenholtz, P., Tyson, G. W. & Blackall, L. L. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148, 2309–2318 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C. & Banfield, J. F. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome 1, 1–17 (2013).

    Article  Google Scholar 

  • 29.

    Krzmarzick, M. J. et al. Natural niche for organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 78, 393–401 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Watts, J. E., Fagervold, S. K., May, H. D. & Sowers, K. R. A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151, 2039–2046 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104 (2013).

    PubMed  Article  Google Scholar 

  • 32.

    Yin, H. et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination. Sci. Rep. 5, 14266 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Li, Y. H., Zhu, J. N., Zhai, Z. H. & Zhang, Q. Endophytic bacterial diversity in roots of Phragmites australis in constructed Beijing Cuihu Wetland (China). FEMS Microbiol. Lett. 309, 84–93 (2010).

    CAS  PubMed  Google Scholar 

  • 34.

    Wang, M., Chen, J. K. & Bo, L. I. Characterization of bacterial community structure and diversity in rhizosphere soils of three plants in rapidly changing salt marshes using 16S rDNA. Pedosphere 17, 545–556 (2007).

    CAS  Article  Google Scholar 

  • 35.

    Zhang, Q. et al. Endophytic bacterial communities associated with roots and leaves of plants growing in Chilean extreme environments. Sci. Rep. 9, 4950 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Nie, M., Wang, M. & Bo, L. Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecol. Eng. 35, 1804–1808 (2009).

    Article  Google Scholar 

  • 37.

    Muyzer, G. & Stams, A. J. M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Vladár, P., Rusznyák, A., Márialigeti, K. & Andrea, K. B. Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb. Ecol. 56, 64–75 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 39.

    Zhou, H. W. et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5, 741–749 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Halkjær, N. P., Caroline, K., Seviour, R. J. & Lund, N. J. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33, 6 (2009).

    Google Scholar 

  • 41.

    Ma, Y., Rajkumar, M. & Freitas, H. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 166, 1154–1161 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Ma, Y., Rajkumar, M. & Freitas, H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75, 719–725 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 43.

    He, M. et al. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillusfusiformis ZC1. J. Hazard. Mater. 185, 682–688 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Raja, C. E. & Omine, K. Characterization of boron resistant and accumulating bacteria Lysinibacillusfusiformis M1, Bacilluscereus M2, Bacilluscereus M3, Bacilluspumilus M4 isolated from former mining site, Hokkaido, Japan. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 47, 1341–1349 (2012).

    CAS  Article  Google Scholar 

  • 45.

    Vendan, R. T., Yu, Y. J., Sun, H. L. & Rhee, Y. H. Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol. 48, 559–565 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Gantar, M., Rowell, P., Kerby, N. W. & Sutherland, I. W. Role of extracellular polysaccharide in the colonization of wheat (Triticumvulgare L.) roots by N2-fixing cyanobacteria. Biol. Fertil. Soils 19, 41–48 (1995).

    CAS  Article  Google Scholar 

  • 47.

    Barraquio, W. L., Revilla, L. & Ladha, J. K. Isolation of endophytic diazotrophic bacteria from wetland rice. Plant Soil. 194, 15–24 (1997).

    CAS  Article  Google Scholar 

  • 48.

    Ladha, J. K., Barraquio, W. L. & Watanabe, I. Isolation and identification of nitrogen-fixing Enterobacter cloacae and Klebsiella planticola associated with rice plants. Can. J. Microbiol. 29, 1301–1308 (1983).

    Article  Google Scholar 

  • 49.

    Reinhold-Hurek, B. et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloafusca (L.) Kunth), and description of two species, Azoarcusindigens sp. nov. and Azoarcuscommunis sp. nov.. Int. J. Syst. Bacteriol. 43, 574–584 (1993).

    Article  Google Scholar 

  • 50.

    Iniguez, A., Dong, Y. & Triplett, E. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant Microbe Interact. 17, 1078–1085 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Reiter, B., Bürgmann, H., Burg, K. & Sessitsch, A. Endophytic nifH gene diversity in African sweet potato. Can. J. Microbiol. 49, 549–555 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Ryan, R. P., Kieran, G., Ashley, F., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Lee, S. et al. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J. Bacteriol. 186, 5384–5391 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Subhash, C. V., Jagdish, K. L. & Anil, K. T. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J. Biotechnol. 91, 127–141 (2001).

    Article  Google Scholar 

  • 55.

    Wakelin, S., Warren, R., Harvey, P. & Ryder, M. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol. Fertil. Soils 40, 36–43 (2004).

    CAS  Article  Google Scholar 

  • 56.

    Compant, S. et al. Endophytic colonization of Vitisvinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71, 1685–1693 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Wang, Y., Brown, H. N., Crowley, D. E. & Szaniszlo, P. J. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ. 16, 579–585 (1993).

    CAS  Article  Google Scholar 

  • 58.

    Cindy, L., Jaco, V., Fiona, P., Edward, R. B. & Moore, S. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).

    Article  Google Scholar 

  • 59.

    Puente, M. E., Li, C. Y. & Bashan, Y. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ. Exp. Bot. 66, 402–408 (2009).

    CAS  Article  Google Scholar 

  • 60.

    Grichko, V. P., Filby, B. & Glick, B. R. Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81, 45–53 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Grichko, V. P. & Glick, B. R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol. Biochem. 39, 11–17 (2001).

    CAS  Article  Google Scholar 

  • 62.

    Liao, C. et al. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351–1361 (2007).

    CAS  Article  Google Scholar 

  • 63.

    Thomas, F., Giblin, A. E., Cardon, Z. G. & Sievert, S. M. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front. Microbiol. 5, 309 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Wang, F., Men, X., Zhang, G., Liang, K. & Wu, L. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express. 8, 182 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  • 68.

    Menhinick, E. F. A comparison of some species-individuals diversity indices applied to samples of field insects. Ecology 45, 859–861 (1964).

    Article  Google Scholar 

  • 69.

    Pielou, E. C. An Introduction to Mathematical Ecology (Wiley, New York, 1969).

    Google Scholar 

  • 70.

    Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26, 192–195 (1951).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Penrose, D. M. & Glick, B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15 (2010).

    Article  Google Scholar 

  • 72.

    Payne, S. M. Detection, isolation, and characterization of siderophores. Method Enzymol. 235, 329–344 (1994).

    CAS  Article  Google Scholar 

  • 73.

    Liang, S. X., Wang, X., Wu, H. & Sun, H. W. Determination of 9 heavy metal elements in sediment by ICP-MS using microwave digestion for sample preparation. Spectrosc. Spectr. Anal. 32, 809–812 (2012).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Cold weather increases the risk of scrotal torsion events: results of an ecological study of acute scrotal pain in Scotland over 25 years

    3 Questions: Fatih Birol on post-Covid trajectories in energy and climate