in

Chemical pollution imposes limitations to the ecological status of European surface waters

  • 1.

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117. https://doi.org/10.1126/science.1248365 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 2.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 736–746. https://doi.org/10.1126/science.1259855 (2015).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Wang, H. et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544. https://doi.org/10.1016/S0140-6736(16)31012-1 (2016).

    Article  Google Scholar 

  • 4.

    Grizzetti, B. et al. Human pressures and ecological status of European rivers. Sci. Rep. 7, 205. https://doi.org/10.1038/s41598-017-00324-3 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl. Acad. Sci. 109, 3232–3237. https://doi.org/10.1073/pnas.1109936109 (2012).

    ADS  Article  PubMed  Google Scholar 

  • 6.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 7.

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being. A Framework for Assessment https://pdf.wri.org/ecosystems_human_wellbeing.pdf (2003).

  • 8.

    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99. https://doi.org/10.1146/annurev-environ-021810-094524 (2011).

    Article  Google Scholar 

  • 9.

    Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491. https://doi.org/10.1038/s41467-018-06822-w (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 10.

    Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23. https://doi.org/10.1016/j.ecoser.2015.10.023 (2016).

    Article  Google Scholar 

  • 11.

    Anzaldua, G. et al. Getting into the water with the ecosystem services approach: the DESSIN ESS evaluation framework. Ecosyst. Serv. 30, 318–326. https://doi.org/10.1016/j.ecoser.2017.12.004 (2018).

    Article  Google Scholar 

  • 12.

    Van Vliet, M. T. H., Florke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802. https://doi.org/10.1038/NGEO3047 (2017).

    ADS  Article  Google Scholar 

  • 13.

    Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90. https://doi.org/10.1002/fee.1450 (2017).

    Article  Google Scholar 

  • 14.

    Global Chemicals Outlook II—from legacies to innovative solutions: implementing the 2030 agenda for sustainable development. Synthesis report https://wedocs.unep.org/bitstream/handle/20.500.11822/28113/GCOII.pdf?sequence=1&isAllowed=y (2019).

  • 15.

    Birk, S. et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1216-4 (2020).

    Article  PubMed  Google Scholar 

  • 16.

    A guide to SDG interactions. From sciene to implementation https://council.science/publications/a-guide-to-sdg-interactions-from-science-to-implementation/ (2017).

  • 17.

    EC. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Off. J. Eur. Union L 396, 1–848 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R01907-20140410&from=EN (2006).

  • 18.

    Geiser, K. Chemicals Without Harm. Policies for a Sustainable World (MIT Press, Cambridge, 2015).

    Google Scholar 

  • 19.

    Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392. https://doi.org/10.1126/science.aay6636 (2020).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 20.

    UNESCO. Solving the puzzle: the ecosystem approach and biosphere reserves https://unesdoc.unesco.org/ark:/48223/pf0000119790 (2000).

  • 21.

    Nõges, P., van de Bund, W., Cardoso, A. C., Solimini, A. G. & Heiskanen, A. S. Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633, 197–211. https://doi.org/10.1007/s10750-009-9883-9 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Tsakiris, G. The status of the European waters in 2015: a review. Environ. Process. 2, 543–557. https://doi.org/10.1007/s40710-015-0079-1 (2015).

    Article  Google Scholar 

  • 23.

    Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Commun. L 327, 1–72 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2000:2327:TOC (2000).

  • 24.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475. https://doi.org/10.1038/461472a (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Clean Water Rule: Definition of “Waters of the United States”. Federal Register 80, 37054–37127, Monday, June 29, 2015/Rules https://www.govinfo.gov/content/pkg/FR-2015-06-29/pdf/2015-13435.pdf (2015).

  • 27.

    C&L Inventory. Database containing classification and labelling information on notified and registered substances received from manufacturers and importers https://echa.europa.eu/information-on-chemicals/cl-inventory-database (accessed March 4, 2019) (2019).

  • 28.

    Posthuma, L., de Zwart, D. & Dyer, S. D. Chemical mixtures affect freshwater species assemblages: from problems to solutions. Curr. Opin. Environ. Sci. Health 11, 78–89. https://doi.org/10.1016/j.coesh.2019.09.002 (2019).

    Article  Google Scholar 

  • 29.

    The Water Framework Directive and the Floods Directive: Actions towards the ‘good status’ of EU water and to reduce flood risks. Communication from the Commission to the European Parliament and the Council, 9.3.2015. COM(2015) 120 final https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52015DC0120 (2015).

  • 30.

    EC. Fitness check of the Water Framework Directive, Groundwater Directive, Environmental Quality Standards Directive and Floods Directive https://ec.europa.eu/environment/water/fitness_check_of_the_eu_water_legislation/documents/Water%20Fitness%20Check%20-%20SWD(2019)439%20-%20web.pdf. 1–176 (2019).

  • 31.

    Arle, J., Mohaupt, V. & Kirst, I. Monitoring of surface waters in Germany under the Water Framework Directive—a review of approaches, methods and results. Water 8, 217. https://doi.org/10.3390/w8060217 (2016).

    Article  Google Scholar 

  • 32.

    Drakvik, E. et al. Statement paper on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ. Int. 134, 105267. https://doi.org/10.1016/j.envint.2019.105267 (2020).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Brack, W. et al. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environ. Sci. Eur. 31, 62. https://doi.org/10.1186/s12302-019-0230-0 (2019).

    Article  Google Scholar 

  • 34.

    Van Gils, J. et al. The European Collaborative Project SOLUTIONS developed models to provide diagnostic and prognostic capacity and fill data gaps for chemicals of emerging concern. Environ. Sci. Eur. 31, 72. https://doi.org/10.1186/s12302-019-0248-3 (2019).

    Article  Google Scholar 

  • 35.

    van Gils, J. et al. Computational material flow analysis for thousands of chemicals of emerging concern in European waters. J. Hazard. Mater. https://doi.org/10.1016/j.jhazmat.2020.122655 (2020).

    Article  PubMed  Google Scholar 

  • 36.

    Pistocchi, A. et al. Assessment of the effectiveness of reported Water Framework Directive Programmes of Measures. Part III—JRC Pressure Indicators v.2.0: nutrients, urban runoff, flow regime and hydromorphological alteration https://doi.org/10.2760/325451 (2018).

  • 37.

    EC. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union L 226, 1–17 https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:2226:0001:0017:EN:PDF (2013).

  • 38.

    EEA. European waters—assessment of status and pressures https://www.eea.europa.eu/publications/state-of-water (2018).

  • 39.

    Dulio, V. et al. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 30, 5. https://doi.org/10.1186/s12302-018-0135-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Guidelines for the health risk assessment of chemical mixtures Fed. Reg. 51 185, 34014–34025 https://www.epa.gov/sites/production/files/32014-34011/documents/chem_mix_31986.pdf (1986).

  • 41.

    Calamari, D. & Vighi, M. A proposal to define quality objectives for aquatic life for mixtures of chemical substances. Chemosphere 25, 531–542. https://doi.org/10.1016/0045-6535(92)90285-Y (1992).

    ADS  Article  Google Scholar 

  • 42.

    Technical guidance for deriving environmental quality standards. Common Implementation Strategy for the Water framework Directive (2000/60/EC)—Guidance Document No. 27 https://circabc.europa.eu/sd/a/ba6810cd-e611-4f72-9902-f0d8867a2a6b/Guidance%20No%2027%20-%20Deriving%20Environmental%20Quality%20Standards%20-%20version%202018.pdf (2011).

  • 43.

    Posthuma, L. & De Zwart, D. Encyclopedia of Toxicology 3rd edn, Vol. 4, 363–368 (Elsevier Inc., Academic Press, 2014).

    Google Scholar 

  • 44.

    Birk, S. et al. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Ind. 18, 31–41. https://doi.org/10.1016/j.ecolind.2011.10.009 (2012).

    Article  Google Scholar 

  • 45.

    De Zwart, D. & Posthuma, L. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ. Toxicol. Chem. 24, 2665–2676. https://doi.org/10.1897/04-639r.1 (2005).

    Article  PubMed  Google Scholar 

  • 46.

    Lyche Solheim, A. et al. A new broad typology for rivers and lakes in Europe: Development and application for large-scale environmental assessments. Sci. Total Environ. 697, 134043. https://doi.org/10.1016/j.scitotenv.2019.134043 (2019).

    ADS  CAS  Article  Google Scholar 

  • 47.

    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 https://www.jstor.org/stable/3868138 (2003).

  • 48.

    Vermeulen, R., Schymanski, E. L., Barabási, A.-L. & Miller, G. W. The exposome and health: where chemistry meets biology. Science 367, 392–396. https://doi.org/10.1126/science.aay3164 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Posthuma, L., van Gils, J., Zijp, M. C., van de Meent, D. & de Zwart, D. Species sensitivity distributions for use in environmental protection, assessment, and management of aquatic ecosystems for 12 386 chemicals. Environ. Toxicol. Chem. 38, 905–917. https://doi.org/10.1002/etc.4373 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Hoondert, R. P. J., Oldenkamp, R., de Zwart, D., van de Meent, D. & Posthuma, L. QSAR-based estimation of Species Sensitivity Distribution parameters: an exploratory investigation. Environ. Toxicol. Chem. 38, 2764–2770. https://doi.org/10.1002/etc.4601 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Williams, A. J. et al. The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J. Chem. Inform. 9, 61. https://doi.org/10.1186/s13321-017-0247-6 (2017).

    CAS  Article  Google Scholar 

  • 52.

    Blum, C. et al. The concept of sustainable chemistry: key drivers for the transition towards sustainable development. Sustain. Chem. Pharm. 5, 94–104. https://doi.org/10.1016/j.scp.2017.01.001 (2017).

    CAS  Article  Google Scholar 

  • 53.

    Kostal, J., Voutchkova-Kostal, A., Anastas, P. T. & Zimmerman, J. B. Identifying and designing chemicals with minimal acute aquatic toxicity. Proc. Natl. Acad. Sci. U.S.A. 112, 6289–6294. https://doi.org/10.1073/pnas.1314991111 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 54.

    Saouter, E. et al. Environmental footprint: update of Life Cycle Impact Assessment methods—ecotoxicity freshwater, human toxicity cancer, and non-cancer https://doi.org/10.2760/178544 (2018).

  • 55.

    Rapport, D. & Friend, A. Towards a comprehensive framework for environmental statistics. A stress-response approach https://www.worldcat.org/title/towards-a-comprehensive-framework-for-environmental-statistics-a-stress-response-approach/oclc/21772350 (1979).

  • 56.

    Kaika, M. & Page, B. The EU Water Framework Directive: part 1. European policy-making and the changing topography of lobbying. Eur. Environ. 13, 314–327. https://doi.org/10.1002/eet.331 (2003).

    Article  Google Scholar 

  • 57.

    Page, B. & Kaika, M. The EU Water Framework Directive: part 2. Policy innovation and the shifting choreography of governance. Eur. Environ. 13, 328–343. https://doi.org/10.1002/eet.332 (2003).

    Article  Google Scholar 

  • 58.

    Elosegi, A., Gessner, M. O. & Young, R. G. River doctors: learning from medicine to improve ecosystem management. Sci. Total Environ. 595, 294–302. https://doi.org/10.1016/j.scitotenv.2017.03.188 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 59.

    Kortenkamp, A. & Faust, M. Regulate to reduce chemical mixture risk. Science 361, 224–226. https://doi.org/10.1126/science.aat9219 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 60.

    Voulvoulis, N., Arpon, K. D. & Giakoumis, T. The EU Water Framework Directive: from great expectations to problems with implementation. Sci. Total Environ. 575, 358–366. https://doi.org/10.1016/j.scitotenv.2016.09.228 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 61.

    Giakoumis, T. & Voulvoulis, N. The transition of EU water policy towards the Water Framework Directive’s integrated river basin management paradigm. Environ. Manag. 62, 819–831. https://doi.org/10.1007/s00267-018-1080-z (2018).

    ADS  Article  Google Scholar 

  • 62.

    Suter, G. W., Traas, T. P. & Posthuma, L. In Species Sensitivity Distributions in Ecotoxicology, Ch 21 (eds Posthuma, L. et al.) 437–474 (CRC Press, Boca Raton, 2002).

    Google Scholar 

  • 63.

    Kortenkamp, A. et al. Common assessment framework for HRA and ERA higher tier assessments including fish and drinking water and multi-species ERA via SSD, population-level ERA via IBM and food web vulnerability ERA. SOLUTIONS Deliverable D18.1 https://www.solutions-project.eu/wp-content/uploads/2018/11/D18.1_SOLUTIONS-D18_1-after-peer-review-clean-V2_Kortenkamp_chm_with_annex.pdf (2018).

  • 64.

    Posthuma, L., De Zwart, D., Keijzers, R. & Postma, J. Water systems analysis with the ecological key factor ‘toxicity’. Part 2. Calibration. Toxic pressure and ecological effects on macrofauna in the Netherlands (in Dutch) https://www.stowa.nl/sites/default/files/assets/PUBLICATIES/Publicaties%202016/STOWA%202016-15/STOWA%202016-15B.pdf (STOWA, Amersfoort, the Netherlands, 2016).

  • 65.

    Posthuma, L. & De Zwart, D. Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ. Toxicol. Chem. 25, 1094–1105. https://doi.org/10.1897/05-305r.1 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 66.

    Posthuma, L. & De Zwart, D. Predicted mixture toxic pressure relates to observed fraction of benthic macrofauna species impacted by contaminant mixtures. Environ. Toxicol. Chem. 31, 2175–2188. https://doi.org/10.1002/etc.1923 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Berger, E., Haase, P., Oetken, M. & Sundermann, A. Field data reveal low critical chemical concentrations for river benthic invertebrates. Sci. Total Environ. 544, 864–873. https://doi.org/10.1016/j.scitotenv.2015.12.006 (2016).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 68.

    Posthuma, L. et al. Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environ. Sci. Eur. 31, 71. https://doi.org/10.1186/s12302-019-0247-4 (2019).

    Article  Google Scholar 

  • 69.

    Zijp, M. C., Posthuma, L. & Van de Meent, D. Definition and applications of a versatile chemical pollution footprint methodology. Environ. Sci. Technol. 48, 10588–10597. https://doi.org/10.1021/es500629f (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 70.

    Bjørn, A., Diamond, M., Birkved, M. & Hauschild, M. Z. Chemical footprint method for improved communication of freshwater ecotoxicity impacts in the context of ecological limits. Environ. Sci. Technol. 48, 13253–13262. https://doi.org/10.1021/es503797d (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 71.

    Kapo, K. E. et al. iSTREEM®: an approach for broad-scale in-stream exposure assessment of “down-the-drain” chemicals. Integr. Environ. Assess. Manag. 12, 782–792. https://doi.org/10.1002/ieam.1793 (2016).

    Article  PubMed  Google Scholar 

  • 72.

    Donnelly, C., Arheimer, B., Capell, R., Dahne, J. & Stromqvist, J. Regional overview of nutrient load in Europe—challenges when using a large-scale model approach, E-HYPE. Understanding fresh-water quality problems in a changing world https://iahs.info/uploads/dms/15569.361%2049-58.pdf (2013).

  • 73.

    Posthuma, L., Suter, G. W. I. & Traas, T. P. Species Sensitivity Distributions in Ecotoxicology (CRC-Press, Boca Raton, 2002).

    Google Scholar 

  • 74.

    Drescher, K. & Bödeker, W. Assessment of the combined effects of substances—the relationship between concentration addition and independent action. Biometrics 51, 716–730. https://doi.org/10.2307/2532957 (1995).

    MathSciNet  Article  MATH  Google Scholar 

  • 75.

    EEA. WISE WFD database at https://www.eea.europa.eu/data-and-maps/data/wise-wfd-3 (2012).

  • 76.

    Globevnik, L., Koprivsek, M. & Snoj, L. Metadata to the MARS spatial database. Freshw. Metadata J. 21, 1–7. https://doi.org/10.15504/fmj.2017.21 (2017).

    Article  Google Scholar 

  • 77.

    Birk, S. et al. Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Sci. Total Environ. 454–455, 490–499. https://doi.org/10.1016/j.scitotenv.2013.03.037 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 78.

    Zijp, M. C., Huijbregts, M. A. J., Schipper, A. M., Mulder, C. & Posthuma, L. Identification and ranking of environmental threats with ecosystem vulnerability distributions. Sci. Rep. 7, 9298. https://doi.org/10.1038/s41598-017-09573-8 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Ecological pest control fortifies agricultural growth in Asia–Pacific economies

    Velcro-like food sensor detects spoilage and contamination