in

Ciliary vortex flows and oxygen dynamics in the coral boundary layer

  • 1.

    Bayne, B. L. In Marine Biology of Polar Regions and Effects of Stress in Marine Organisms: Proceedings of the 18th European Marine Biology Symposium, University of Oslo, Norway (eds. Gray, J. S. & Christiansen, M. E.) 331–349 (John Wiley & Sons, 1985).

  • 2.

    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche Construction. Am. Nat. 147, 641–648, https://doi.org/10.1086/285870 (1996).

    • Article
    • Google Scholar
  • 3.

    Laland, K. N. & Sterelny, K. Perspective: Seven reasons (not) to neglect niche construction. Evolution 60, 1751–1762, https://doi.org/10.1111/j.0014-3820.2006.tb00520.x (2006).

  • 4.

    Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. PNAS 111, 13391–13396, https://doi.org/10.1073/pnas.1323094111 (2014).

  • 5.

    Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus1. Limnol. Oceanogr. 30, 111–122, https://doi.org/10.4319/lo.1985.30.1.0111 (1985).

  • 6.

    Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. PNAS 86, 8833–8836 (1989).

  • 7.

    Wang, J., Zhao, L. & Wei, H. Variable diffusion boundary layer and diffusion flux at sediment-water interface in response to dynamic forcing over an intertidal mudflat. Chin. Sci. Bull. 57, 1568–1577, https://doi.org/10.1007/s11434-012-4988-3 (2012).

  • 8.

    Jørgensen, B. B. & Des Marais, D. J. The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35, 1343–1355, https://doi.org/10.4319/lo.1990.35.6.1343 (1990).

  • 9.

    Hondzo, M., Feyaerts, T., Donovan, R. & O’Connor, B. L. Universal scaling of dissolved oxygen distribution at the sediment-water interface: A power law. Limnol. Oceanogr. 50, 1667–1676, https://doi.org/10.4319/lo.2005.50.5.1667 (2005).

  • 10.

    Schlichting, H. & Gersten, K. Boundary-layer Theory. 9th edn, (Springer -Verlag, 2017).

  • 11.

    Barry, P. H. & Diamond, J. M. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872, https://doi.org/10.1152/physrev.1984.64.3.763 (1984).

  • 12.

    Chang, S., Elkins, C., Alley, M., Eaton, J. & Monismitha, S. Flow inside a coral colony measured using magnetic resonance velocimetry. Limnol. Oceanogr. 54, 1819–1827, https://doi.org/10.4319/lo.2009.54.5.1819 (2009).

  • 13.

    Gardella, D. J. & Edmunds, P. J. The effect of flow and morphology on boundary layers in the scleractinians Dichocoenia stokesii (Milne-Edwards and Haime) and Stephanocoenia michilini (Milne-Edwards and Haime). J. Exp. Mar. Biol. Ecol. 256, 279–289, https://doi.org/10.1016/S0022-0981(00)00326-9 (2001).

  • 14.

    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems. 3rd edn, (Cambridge University Press, 2007).

  • 15.

    Ferrier-Pagès, C. et al. In situ assessment of the daily primary production of the temperate symbiotic coral Cladocora caespitosa. Limnol. Oceanogr. 58, 1409–1418, https://doi.org/10.4319/lo.2013.58.4.1409 (2013).

  • 16.

    Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049, https://doi.org/10.1242/jeb.00622 (2003).

  • 17.

    Hoegh-Guldberg, O. & Smith, G. J. Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar. Ecol. Prog. Ser. 57, 173–186 (1989).

  • 18.

    Finelli, C. M., Helmuth, B. S. T., Pentcheff, N. D. & Wethey, D. S. Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25, 47–57, https://doi.org/10.1007/s00338-005-0055-8 (2006).

  • 19.

    Mass, T., Genin, A., Shavit, U., Grinstein, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. PNAS 107, 2527–2531, https://doi.org/10.1073/pnas.0912348107 (2010).

  • 20.

    Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal changes in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, 1–16, https://doi.org/10.1029/2004JC002576 (2005).

  • 21.

    Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B. B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).

  • 22.

    Shashar, N., Cohen, Y. & Loya, Y. Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol. Bull. 185, 455–461, https://doi.org/10.2307/1542485 (1993).

  • 23.

    Vogel, S. Life in Moving Fluids. 2nd edn, (Princeton Univ. Press, 1996).

  • 24.

    Mariscal, R. N. & Bigger, C. H. Possible ecological significance of octocoral epithelial ultrastructure. Proceedings of 3rd International Coral Reef Symposium 1, 127–134 (1977).

    • Google Scholar
  • 25.

    Stafford-Smith, M. & Ormond, R. Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Mar. Freshw. Res 43, 683–705, https://doi.org/10.1071/MF9920683 (1992).

    • Article
    • Google Scholar
  • 26.

    Lewis, J. B. & Price, W. S. Patterns of ciliary currents in Atlantic reef corals and their functional significance. J. Zool. 178, 77–89, https://doi.org/10.1111/j.1469-7998.1976.tb02264.x (1976).

    • Article
    • Google Scholar
  • 27.

    Yonge, C. M. Studies on the physiology of corals. I. Feeding mechanisms and food. Scient. Rep. Gr. Barrier Reef Expd 1, 13–57 (1930).

    • Google Scholar
  • 28.

    Roder, C. et al. Trophic response of corals to large amplitude internal waves. Mar. Ecol. Prog. Ser. 412, 113–128, https://doi.org/10.3354/meps08707 (2010).

  • 29.

    Schmidt, G. M. et al. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations. Mar. Ecol. Prog. Ser. 456, 113–126, https://doi.org/10.3354/meps09682 (2012).

  • 30.

    Gibbons, I. R. et al. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. PNAS 75, 2220–2224, https://doi.org/10.1073/pnas.75.5.2220 (1978).

  • 31.

    Willert, C., Stasicki, B., Klinner, J. & Moessner, S. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry. Meas. Sci. Technol. 21, 075402, https://doi.org/10.1088/0957-0233/21/7/075402 (2010).

  • 32.

    Boudreau, B. P. Diagenetic Models and Their Implementation. 1st edn, (Springer, 1997).

  • 33.

    Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant. Cell. Environ. 19, 291–299, https://doi.org/10.1111/j.1365-3040.1996.tb00251.x (1996).

    • Article
    • Google Scholar
  • 34.

    Ulstrup, K. E., Hill, R. & Ralph, P. J. Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar. Ecol. Prog. Ser. 286, 125–132, https://doi.org/10.3354/meps286125 (2005).

  • 35.

    Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62, https://doi.org/10.1007/bf00024185 (1986).

  • 36.

    Van Driest, E. R. On turbulent flow near a wall. AIAA J. 23, 1007–1011, https://doi.org/10.2514/8.3713 (1956).

  • 37.

    Schiller, C. & Herndl, G. J. Evidence of enhanced microbial activity in the interstitial space of branched corals: possible implications for coral metabolism. Coral Reefs 7, 179–184 (1989).

  • 38.

    Lesser, M. P. & Shick, J. M. Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar. Biol. 102, 243–255, https://doi.org/10.1007/bf00428286 (1989).

    • Article
    • Google Scholar
  • 39.

    Dykens, J. A. & Shick, J. M. Photobiology of the symbiotic sea anemone, Anthopleura elegantissima: defenses against photodynamic effects, and seasonal photoacclimatization. Biol. Bull. 167, 683–697, https://doi.org/10.2307/1541419 (1984).

  • 40.

    Crawley, A., Kline, D. I., Dunn, S., Anthony, K. & Dove, S. The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Glob. Change Biol. 16, 851–863, https://doi.org/10.1111/j.1365-2486.2009.01943.x (2010).

  • 41.

    Lesser, M. P. Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16, 187–192, https://doi.org/10.1007/s003380050073 (1997).

  • 42.

    Lesser, M. P., Stochaj, W. R., Tapley, D. W. & Shick, J. M. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232, https://doi.org/10.1007/bf00265015 (1990).

  • 43.

    Yakovleva, I. M. et al. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar. Ecol. Prog. Ser. 378, 105–112, https://doi.org/10.3354/meps07857 (2009).

  • 44.

    Chan, N. C. S., Wangpraseurt, D., Kühl, M. & Connolly, S. R. Flow and coral morphology control coral surface pH: implications for the effects of ocean acidification. Front. Mar. Sci. 3, https://doi.org/10.3389/fmars.2016.00010 (2016).

  • 45.

    Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J. Exp. Mar. Biol. Ecol. 288, 1–15, https://doi.org/10.1016/S0022-0981(02)00578-6 (2003).

    • Article
    • Google Scholar
  • 46.

    Hill, R. et al. Spatial heterogeneity of photosynthesis and the effect of temperature-induced bleaching conditions in three species of corals. Mar. Biol. 144, 633–640, https://doi.org/10.1007/s00227-003-1226-1 (2004).

    • Article
    • Google Scholar
  • 47.

    Nakamura, T. & van Woesik, R. Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar. Ecol. Prog. Ser. 212, 301–304, https://doi.org/10.3354/meps212301 (2001).

  • 48.

    Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. PNAS 114, 3660–3665, https://doi.org/10.1073/pnas.1621517114 (2017).

  • 49.

    Pacherres, C. O., Schmidt, G. M. & Richter, C. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves. J. Exp. Biol. 216, 4365–4374, https://doi.org/10.1242/jeb.085548 (2013).

  • 50.

    Jones, R. J. & Hoegh-Guldberg, O. Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant. Cell. Environ. 24, 89–99, https://doi.org/10.1046/j.1365-3040.2001.00648.x (2001).

  • 51.

    Levy, O. et al. Diurnal hysteresis in coral photosynthesis. Mar. Ecol. Prog. Ser. 268 (2004).

  • 52.

    Koren, K., Jakobsen, S. L. & Kühl, M. In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sens. Actuators B Chem 237, 1095–1101, https://doi.org/10.1016/j.snb.2016.05.147 (2016).


  • Source: Ecology - nature.com

    Technique could enable cheaper fertilizer production

    Millennial-scale hydroclimate control of tropical soil carbon storage