in

Circadian clock-controlled gene expression in co-cultured, mat-forming cyanobacteria

  • 1.

    De Roy, K., Marzorati, M., Van den Abbeele, P., Van de Wiele, T. & Boon, N. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities. Environ. Microbiol. 16, 1472–1481 (2014).

    PubMed  Google Scholar 

  • 2.

    Mee, M. T. & Wang, H. H. Engineering ecosystems and synthetic ecologies. Mol. Biosyst. 8, 2470 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 3.

    Hendrickx, L. et al. Microbial ecology of the closed artificial ecosystem MELiSSA (micro-ecological life support system alternative): reinventing and compartmentalizing the Earth’s food and oxygen regeneration system for long-haul space exploration missions. Res. Microbiol. 157, 77–86 (2006).

    PubMed  Google Scholar 

  • 4.

    Chen, Y. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review. J. Ind. Microbiol. Biotechnol. 38, 581–597 (2011).

    PubMed  CAS  Google Scholar 

  • 5.

    Spus, M. et al. Strain diversity and phage resistance in complex dairy starter cultures. J. Dairy Sci. 98, 5173–5182 (2015).

    PubMed  CAS  Google Scholar 

  • 6.

    Ma, Q. et al. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C. PLoS ONE 6, e26108 (2011).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 7.

    Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut. Microbiome 1, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Bolhuis, H. & Stal, L. J. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 5, 1701–1712 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 9.

    van Gemerden, H. Microbial mats: a joint venture. Mar. Geol. 113, 3–25 (1993).

    ADS  Google Scholar 

  • 10.

    Tolker-Nielsen, T. & Molin, S. Spatial organization of microbial biofilm communities. Microb. Ecol. 40, 75–84 (2000).

    PubMed  CAS  Google Scholar 

  • 11.

    Bolhuis, H., Cretoiu, M. S. & Stal, L. J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 90, 335–350 (2014).

    PubMed  CAS  Google Scholar 

  • 12.

    Cohen, S. E. & Golden, S. S. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 79, 373–385 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 13.

    Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    ADS  PubMed  CAS  Google Scholar 

  • 14.

    Murayama, Y. et al. Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation. Proc. Natl. Acad. Sci. USA. 114, 5641–5646 (2017).

    PubMed  CAS  Google Scholar 

  • 15.

    Johnson, C. H., Zhao, C., Xu, Y. & Mori, T. Timing the day: what makes bacterial clocks tick?. Nat. Rev. Microbiol. 15, 232–242 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 16.

    Woelfle, M. A., Ouyang, Y., Phanvijhitsiri, K. & Johnson, C. H. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. 14, 1481–1486 (2004).

    PubMed  CAS  Google Scholar 

  • 17.

    Welkie, D. G. et al. A hard day’s night: cyanobacteria in diel cycles. Trends Microbiol. 27, 231–242 (2019).

    PubMed  CAS  Google Scholar 

  • 18.

    Ivleva, N. B., Gao, T., LiWang, A. C. & Golden, S. S. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. Proc. Natl. Acad. Sci. USA. 103, 17468–17473 (2006).

    ADS  PubMed  CAS  Google Scholar 

  • 19.

    Gutu, A. & O’Shea, E. K. Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol. Cell 50, 288–294 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 20.

    Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 21.

    Pattanayak, G. & Rust, M. J. The cyanobacterial clock and metabolism. Curr. Opin. Microbiol. 18, 90–95 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 22.

    Mackey, S. R., Golden, S. S. & Ditty, J. L. The itty-bitty time machine genetics of the cyanobacterial circadian clock. Adv. Genet. 74, 13–53 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 23.

    Resch, A., Rosenstein, R., Nerz, C. & Götz, F. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol. 71, 2663–2676 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 24.

    Moorthy, S. & Watnick, P. I. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol. Microbiol. 57, 1623–1635 (2005).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 25.

    Edgar, R. S. et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459–464 (2012).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 26.

    Pinto, F., Pacheco, C. C., Ferreira, D., Moradas-Ferreira, P. & Tamagnini, P. Selection of suitable reference genes for RT-qPCR analyses in cyanobacteria. PLoS ONE 7, 1–9 (2012).

    Google Scholar 

  • 27.

    Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: Bestkeeper–Excel-based tool using pair-wise correlations. Biotechnol. Lett. 26, 509–515 (2004).

    PubMed  CAS  Google Scholar 

  • 28.

    Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package. Community Ecol. Packag. 2, (2019).

  • 29.

    Wu, G., Anafi, R. C., Hughes, M. E., Kornacker, K. & Hogenesch, J. B. MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32, 3351–3353 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 30.

    Hörnlein, C., Confurius-Guns, V., Stal, L. J. & Bolhuis, H. Daily rhythmicity in coastal microbial mats. npj Biofilms Microbiomes 4, 11 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Kondo, T. et al. Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA. 90, 5672–5676 (1993).

    ADS  PubMed  CAS  Google Scholar 

  • 32.

    Tomita, J. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005).

    ADS  PubMed  CAS  Google Scholar 

  • 33.

    Whale, G. F. & Walsby, A. E. Motility of the cyanobacterium Microcoleus chthonoplastes in mud. Br. Phycol. J. 19, 117–123 (1984).

    Google Scholar 

  • 34.

    Urmeneta, J., Navarrete, A., Huete, J. & Guerrero, R. Isolation and characterization of cyanobacteria from microbial mats of the Ebro Delta Spain. Curr. Microbiol. 46, 199–204 (2003).

    PubMed  CAS  Google Scholar 

  • 35.

    Kothari, A., Vaughn, M. & Garcia-Pichel, F. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Front. Microbiol. 4, 363 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Rath, J. & Adhikary, S. P. Response of the estuarine cyanobacterium Lyngbya aestuarii to UV-B radiation. J. Appl. Phycol. 19, 529–536 (2007).

    CAS  Google Scholar 

  • 37.

    Holtzendorff, J. et al. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol. Rhythms 23, 187–199 (2008).

    PubMed  CAS  Google Scholar 

  • 38.

    O’Neill, J. & Reddy, A. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Shi, T., Ilikchyan, I., Rabouille, S. & Zehr, J. P. Genome-wide analysis of diel gene expression in the unicellular N 2-fixing cyanobacterium Crocosphaera watsonii WH 8501. ISME J. 4, 621–632 (2010).

    PubMed  CAS  Google Scholar 

  • 40.

    Červený, J., Sinetova, M. A., Valledor, L., Sherman, L. A. & Nedbal, L. Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142. Proc. Natl. Acad. Sci. U. S. A. 110, 13210–5 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Johnson, C. H., Stewart, P. L. & Egli, M. The cyanobacterial circadian system: from biophysics to bioevolution. Annu. Rev. Biophys. 40, 143–167 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 42.

    Mitsui, A. et al. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature 323, 720–722 (1986).

    ADS  CAS  Google Scholar 

  • 43.

    Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294, 1534–1537 (2001).

    ADS  PubMed  CAS  Google Scholar 

  • 44.

    Besharova, O., Suchanek, V. M., Hartmann, R., Drescher, K. & Sourjik, V. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli. Front. Microbiol. 7, 1568 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Nishiyama, Y. et al. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 20, 5587–5594 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  • 46.

    Nishiyama, Y., Allakhverdiev, S. I., Yamamoto, H., Hayashi, H. & Murata, N. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry 43, 11321–11330 (2004).

    PubMed  CAS  Google Scholar 

  • 47.

    Los, D. A. & Zinchenko, V. V. in Lipids Photosynth. Essent. Regul. Funct. (eds. Wada, H. & Murata, N.) 329–348 (Springer Netherlands, 2010). doi:10.1007/978–90–481–2863–1_15

  • 48.

    Zehr, J. P., Crumbliss, L. L., Church, M. J., Omoregie, E. O. & Jenkins, B. D. Nitrogenase genes in PCR and RT-PCR reagents: implications for studies of diversity of functional genes. Biotechniques 35, 996–1005 (2003).

    PubMed  CAS  Google Scholar 

  • 49.

    Stal, L. J., Bolhuis, H. & Cretoiu, M. S. Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environ. Microbiol. 21, 1529-1551/////// (2019).

    PubMed  Google Scholar 

  • 50.

    Bolhuis, H., Severin, I., Confurius-Guns, V., Wollenzien, U. I. a & Stal, L. J. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. ISME J. 4, 121–30 (2010).

  • 51.

    Lee, S. H., Pulakat, L., Parker, K. C. & Gavini, N. Genetic analysis on the NifW by utilizing the yeast two-hybrid system revealed that the NifW of Azotobacter vinelandii interacts with the NifZ to form higher-order complexes. Biochem. Biophys. Res. Commun. 244, 498–504 (1998).

    PubMed  CAS  Google Scholar 

  • 52.

    Severin, I. & Stal, L. J. NifH expression by five groups of phototrophs compared with nitrogenase activity in coastal microbial mats. FEMS Microbiol. Ecol. 73, 55–67 (2010).

    PubMed  CAS  Google Scholar 

  • 53.

    Ottesen, E. a et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc. Natl. Acad. Sci. U. S. A. 110, E488–97 (2013).

  • 54.

    Stal, L. J., Gemerden, H. & Krumbein, W. E. Structure and development of a benthic marine microbial mat. FEMS Microbiol. Lett. 31, 111–125 (1985).

    CAS  Google Scholar 

  • 55.

    Villbrandt, M. & Stal, L. J. The effect of sulfide on nitrogen fixation in heterocystous and non-heterocystous cyanobacterial mat communities. Algol. Stud. für Hydrobiol. Suppl. 83, 549–563 (1996).

    Google Scholar 

  • 56.

    Paerl, H. W., Pinckney, J. L. & Steppe, T. F. Cyanobacterial-bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2, 11–26 (2000).

    PubMed  CAS  Google Scholar 

  • 57.

    Fourçans, A. et al. Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol. Ecol. 51, 55–70 (2004).

    PubMed  Google Scholar 

  • 58.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Pabinger, S., Rödiger, S., Kriegner, A., Vierlinger, K. & Weinhäusel, A. A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol. Detect. Quantif. 1, 23–33 (2014).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    MIT News – Food | Water

    Increasing the broad-leaved tree fraction in European forests mitigates hot temperature extremes