in

Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming

  • 1.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim Change 3, 919–925 (2013).

    • Article
    • Google Scholar
  • 2.

    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).

  • 3.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • 4.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

  • 5.

    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).

  • 6.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014).

  • 7.

    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).

    • Article
    • Google Scholar
  • 8.

    Webb, T. J., Berghe, E. V. & O’Dor, R. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).

  • 9.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

  • 10.

    Desbruyères, D., McDonagh, E. L., King, B. A. & Thierry, V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Climate 30, 1985–1997 (2016).

    • Article
    • Google Scholar
  • 11.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

  • 12.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

  • 13.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

  • 14.

    García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    • Article
    • Google Scholar
  • 15.

    Chivers, W. J., Walne, A. W. & Hays, G. C. Mismatch between marine plankton range movements and the velocity of climate change. Nat. Commun. 8, 14434 (2017).

  • 16.

    Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).

    • Article
    • Google Scholar
  • 17.

    Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).

    • Article
    • Google Scholar
  • 18.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

  • 19.

    Sayre, R. et al. A three-dimensional mapping of the ocean based on environmental data. Oceanography 30, 90–103 (2017).

    • Article
    • Google Scholar
  • 20.

    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species v.10/2019 (Global Biodiversity Information Facility, accessed 2019); https://www.aquamaps.org/

  • 21.

    Levin, L. A. & Bris, N. L. The deep ocean under climate change. Science 350, 766–768 (2015).

  • 22.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

  • 23.

    Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    • Article
    • Google Scholar
  • 24.

    Wright, G. et al. Marine spatial planning in areas beyond national jurisdiction. Mar. Policy (in the press).

  • 25.

    Ashford, O. S. et al. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proc. R. Soc. B 285, 20180923 (2018).

    • Article
    • Google Scholar
  • 26.

    Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

  • 27.

    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources. ICES J. Mar. Sci. 76, 609–615 (2019).

    • Article
    • Google Scholar
  • 28.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  • 29.

    Phrampus, B. J., Hornbach, M. J., Ruppel, C. D. & Hart, P. E. Widespread gas hydrate instability on the upper U.S. Beaufort margin. J. Geophys. Res. Solid Earth 119, 8594–8609 (2014).

  • 30.

    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

    • Article
    • Google Scholar
  • 31.

    García Molinos, J., Burrows, M. T. & Poloczanska, E. S. Ocean currents modify the coupling between climate change and biogeographical shifts. Sci. Rep. 7, 1–9 (2017).

  • 32.

    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).

    • Article
    • Google Scholar
  • 33.

    Venegas‐Li, R., Levin, N., Possingham, H. & Kark, S. 3D spatial conservation prioritisation: accounting for depth in marine environments. Methods Ecol. Evol. 9, 773–784 (2018).

    • Article
    • Google Scholar
  • 34.

    Morgan, L., Pike, E. & Moffitt, R. How much of the ocean is protected? Biodiversity 19, 148–151 (2018).

    • Google Scholar
  • 35.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

  • 36.

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

  • 37.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    • CAS
    • Google Scholar
  • 38.

    Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).

  • 39.

    Fredston‐Hermann, A., Gaines, S. D. & Halpern, B. S. Biogeographic constraints to marine conservation in a changing climate. Ann. NY Acad. Sci. 1429, 5–17 (2018).

    • Article
    • Google Scholar
  • 40.

    Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    • Article
    • Google Scholar
  • 41.

    Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).

  • 42.

    Vrac, M., Stein, M. L., Hayhoe, K. & Liang, X.-Z. A general method for validating statistical downscaling methods under future climate change. Geophys. Res. Lett. 34, L18701 (2007).

  • 43.

    Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).

    • Article
    • Google Scholar
  • 44.

    Schulzweida, U. CDO User Guide v.1.9.8 (Zenodo, 2019).

  • 45.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 46.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

  • 47.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    • Article
    • Google Scholar
  • 48.

    Richardson, A. J. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65, 279–295 (2008).

    • Article
    • Google Scholar
  • 49.

    Sen Gupta, A. et al. Episodic and non-uniform shifts of thermal habitats in a warming ocean. Deep Sea Res. Part II 113, 59–72 (2015).

    • Article
    • Google Scholar
  • 50.

    García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).

    • Article
    • Google Scholar
  • 51.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    • Article
    • Google Scholar
  • 52.

    Brown, A. & Thatje, S. The effects of changing climate on faunal depth distributions determine winners and losers. Glob. Change Biol. 21, 173–180 (2015).

    • Article
    • Google Scholar
  • 53.

    Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

  • 54.

    Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).

    • Article
    • Google Scholar
  • 55.

    Schliep, E. M., Gelfand, A. E. & Clark, J. S. Stochastic modeling for velocity of climate change. J. Agric. Biol. Environ. Stat. 20, 323–342 (2015).

    • Article
    • Google Scholar
  • 56.

    Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).

    • Article
    • Google Scholar
  • 57.

    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).


  • Source: Ecology - nature.com

    Solar energy farms could offer second life for electric vehicle batteries

    Width identification of transition zone between desert and oasis based on NDVI and TCI