in

Climatic-niche evolution follows similar rules in plants and animals

  • 1.

    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).

  • 2.

    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc. Natl Acad. Sci. USA 106, 19659–19665 (2009).

  • 3.

    Rangel, T. F. L. V. B., Diniz-Filho, J. A. F. & Colwell, R. K. Species richness and evolutionary niche dynamics: a spatial pattern-oriented simulation experiment. Am. Nat. 170, 602–616 (2007).

  • 4.

    Smith, B. T., Bryson, R. W., Houston, D. D. & Klicka, J. An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol. Lett. 15, 1318–1325 (2012).

  • 5.

    Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B 279, 194–201 (2011).

  • 6.

    Hua, X. & Wiens, J. J. How does climate influence speciation? Am. Nat. 182, 1–12 (2013).

  • 7.

    Jezkova, T. & Wiens, J. J. Testing the role of climate in speciation: new methods and applications to squamate reptiles (lizards and snakes). Mol. Ecol. 27, 2754–2769 (2018).

  • 8.

    Cooney, C. R., Seddon, N. & Tobias, J. A. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869–878 (2016).

  • 9.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

  • 10.

    Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34–43 (2018).

  • 11.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

  • 12.

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

  • 13.

    Cooper, N., Freckleton, R. P. & Jetz, W. Phylogenetic conservatism of environmental niches in mammals. Proc. R. Soc. B 278, 2384–2391 (2011).

  • 14.

    Fisher-Reid, M. C., Kozak, K. H. & Wiens, J. J. How is the rate of climatic-niche evolution related to climatic-niche breadth? Evolution 66, 3836–3851 (2012).

  • 15.

    Quintero, I. & Wiens, J. J. What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Glob. Ecol. Biogeogr. 22, 422–432 (2013).

    • Article
    • Google Scholar
  • 16.

    Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).

  • 17.

    Smith, S. A. & Beaulieu, J. M. Life history influences rates of climatic niche evolution in flowering plants. Proc. R. Soc. B 276, 4345–4352 (2009).

  • 18.

    Jezkova, T. & Wiens, J. J. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proc. R. Soc. B 283, 20162104 (2016).

  • 19.

    Bradshaw, A. D. Some of the evolutionary consequences of being a plant. Evol. Biol. 5, 25–47 (1972).

    • Google Scholar
  • 20.

    Huey, R. B. et al. Plants versus animals: do they deal with stress in different ways? Integr. Comp. Biol. 42, 415–423 (2002).

  • 21.

    Davies, T. J. & Savolainen, V. Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60, 476–483 (2006).

  • 22.

    Scholl, J. P. & Wiens, J. J. Diversification rates and species richness across the Tree of Life. Proc. R. Soc. B 283, 20161334 (2016).

  • 23.

    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

  • 24.

    Vázquez, D. P. & Stevens, R. D. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164, E1–E19 (2004).

  • 25.

    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

  • 26.

    Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. 196, 681–694 (2012).

  • 27.

    Cang, F. A., Wilson, A. A. & Wiens, J. J. Climate change is projected to outpace rates of niche change in grasses. Biol. Lett. 12, 20160368 (2016).

  • 28.

    Hunt, G. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38, 351–373 (2012).

    • Article
    • Google Scholar
  • 29.

    Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).

  • 30.

    Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

  • 31.

    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    • Article
    • Google Scholar
  • 32.

    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. R. Soc. B 281, 20133229 (2014).

  • 33.

    Hua, X. The impact of seasonality on niche breadth, distribution range and species richness: a theoretical exploration of Janzen’s hypothesis. Proc. R. Soc. B 283, 20160349 (2016).

  • 34.

    Lynch, M. & Gabriel, W. Environmental tolerance. Am. Nat. 129, 283–303 (1987).

    • Article
    • Google Scholar
  • 35.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B 267, 739–745 (2000).

  • 36.

    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).

  • 37.

    Brown, J. H. & Lomolino, M. V. Biogeography (Sinauer Associates, 1998).

  • 38.

    Loehle, C. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 25, 735–742 (1998).

    • Article
    • Google Scholar
  • 39.

    Qian, H. Relationships between plant and animal species richness at a regional scale in China. Conserv. Biol. 21, 937–944 (2007).

  • 40.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

  • 41.

    Jetz, W., Kreft, H., Ceballos, G. & Mutke, J. Global associations between terrestrial producer and vertebrate consumer diversity. Proc. R. Soc. B 276, 269–278 (2009).

  • 42.

    The Angiosperm Phylogeny Group et al. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).

    • Article
    • Google Scholar
  • 43.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 44.

    Hijmans, R. J. et al. Raster package in R, version 2.8–19 (2015).

  • 45.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 46.

    Castellanos-Morales, G. et al. Historical biogeography and phylogeny of Cucurbita: insights from ancestral area reconstruction and niche evolution. Mol. Phylogenet. Evol. 128, 38–54 (2018).

  • 47.

    Pirie, M. D., Maas, P. J. M., Wilschut, R. A., Melchers-Sharrott, H. & Chatrou, L. W. Parallel diversifications of Cremastosperma and Mosannona (Annonaceae), tropical rainforest trees tracking Neogene upheaval of South America. R. Soc. Open Sci. 5, 171561 (2018).

  • 48.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  • 49.

    Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

  • 50.

    Orme, D. & Freckleton, R. The caper package: comparative analysis of phylogenetics and evolution in R. Version 1.0.1 (2018).

  • 51.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

  • 52.

    Fiz-Palacios, O., Schneider, H., Heinrichs, J. & Savolainen, V. Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol. Biol. 11, 341 (2011).

  • 53.

    Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).

  • 54.

    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    • Article
    • Google Scholar
  • 55.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

  • 56.

    Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).

  • 57.

    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

  • 58.

    Ghasemi, A. & Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 486–489 (2012).

  • 59.

    Adams, D. C. Comparing evolutionary rates for different phenotypic traits on a phylogeny using likelihood. Syst. Biol. 62, 181–192 (2013).

  • 60.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    • Article
    • Google Scholar
  • 61.

    Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018).

  • 62.

    Zhang, Z. Animal biodiversity: an update of classification and diversity in 2013. Zootaxa 3703, 5–11 (2013).

    • Article
    • Google Scholar
  • 63.

    Niklas, K. Plant Evolution: An Introduction to the History of Life (Univ. of Chicago Press, 2016).

  • 64.

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

  • 65.

    Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography

    Understanding the impact of climate change on the ocean