
Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Chang. Biol. 22, 2665–2675 (2016).
Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).
Philippart, C. J. M. et al. Impacts of climate change on European marine ecosystems: Observations, expectations and indicators. J. Exp. Mar. Bio. Ecol. 400, 52–69 (2011).
IPCC. Climate Change 2014 Synthesis Report Summary Chapter for Policymakers (2014).
Feely, R. A. et al. Impact of Anthropogenic CO 2 on the CaCO 3 System in the Oceans Richard A. Feely,. Science (80-.). 305, 362–367 (2004).
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean Acidification: The Other CO 2Problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).
Queirós, A. M. et al. Scaling up experimental ocean acidification and warming research: From individuals to the ecosystem. Glob. Chang. Biol. 21, 130–143 (2015).
Purkey, S. G. & Johnson, G. C. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 26, 6105–6122 (2013).
Solomon, S. et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press 4 (2007).
Mora, C. et al. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. PLoS Biol. 11 (2013).
Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anth 5, 4 (2017).
Brewer, P. G. Ocean chemistry of the fossil fuel CO2 signal: The haline signal of ‘business as usual’. Geophys. Res. Lett. 24, 1367–1369 (1997).
Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).
Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).
Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean Acidification: The Other CO 2 Problem, https://doi.org/10.1146/annurev.marine.010908.163834 (2009).
Moreno, R., Jover, L., Diez, C., Sardà, F. & Sanpera, C. Ten Years after the Prestige Oil Spill: Seabird Trophic Ecology as Indicator of Long-Term Effects on the Coastal Marine Ecosystem. PLoS One 8, 1–10 (2013).
NAS. Behavior and Fate of Oil. Oil in the Sea III 4 (2003).
Jernelv, A. The threats from oil spills: Now, then, and in the future. Ambio 39, 353–366 (2010).
Muehlenbachs, L., Cohen, M. A. & Gerarden, T. The impact of water depth on safety and environmental performance in offshore oil and gas production. Energy Policy 55, 699–705 (2013).
Crone, T. J. & Tolstoy, M. Magnitude of the 2010 Gulf of Mexico oil leak. Science 330, 634 (2010).
Camilli, R. et al. Tracking hydrocarbon plume transport and biodegradation at deepwater horizon. Science (80-.) 330, 201–204 (2010).
Cornwall, W. Deepwater Horizon: After the oil. Science (80-.). 348, 22–29 (2015).
Mu, J., Jin, F., Ma, X., Lin, Z. & Wang, J. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 33, 2576–2583 (2014).
Prince, R. C. & Butler, J. D. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil. Environ. Sci. Pollut. Res. 21, 9506–9510 (2014).
Kleindienst, S. et al. Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc. Natl. Acad. Sci. 112, 14900–14905 (2015).
Fisher, C. R. et al. Footprint of Deepwater Horizon blowout impact to deep-water coral communities. Proc. Natl. Acad. Sci. 111, 11744–11749 (2014).
Etnoyer, P. & Warrenchuk, J. A catshark nursery in a deep gorgonian field in the Mississippi Canyon, Gulf of Mexico. Bull. Mar. Sci. 81, 553–559 (2007).
Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep. Res. Part I Oceanogr. Res. Pap. 55, 777–787 (2008).
Ross, S. W., Quattrini, A. M., Roa-Varón, A. Y. & McClain, J. P. Species composition and distributions of mesopelagic fishes over the slope of the north-central Gulf of Mexico. Deep. Res. Part II Top. Stud. Oceanogr. 57, 1926–1956 (2010).
Oevelen, D. V et al. The cold-water coral community as a hot spot for carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). 54, 1829–1844 (2009).
Etnoyer, P. J. et al. Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35, 77–90 (2016).
Moore, D. R. & Bullis, H. R. A deep-water coral reef in the Gulf of Mexico. Bull. Mar. Sci. Gulf Caribb. 10, 125–128 (1960).
Roberts, J. M., Wheeler, A. J. & Freiwald, A. Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science (80-.) 312, 543–547 (2006).
Wienberg, C. & Titschack, J. Framework-Forming Scleractinian Cold-Water Corals Through Space and Time: A Late Quaternary North Atlantic Perspective. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S., Bramanti, L., Gori, A. & Covadonga, O.) 699–732, https://doi.org/10.1007/978-3-319-21012-4_16 (Springer International Publishing, 2017).
Quattrini, A. M. et al. A phylogenetic approach to octocoral community structure in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 99, 92–102 (2014).
Quattrini, A. M., Gómez, C. E. & Cordes, E. E. Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia, https://doi.org/10.1007/s00442-016-3765-4 (2016).
Silva, M., Etnoyer, P. J. & MacDonald, I. R. Coral injuries observed at Mesophotic Reefs after the Deepwater Horizon oil discharge. Deep. Res. Part II Top. Stud. Oceanogr. 129, 96–107 (2016).
White, H. K. et al. Long-Term Persistence of Dispersants following the Deepwater Horizon Oil Spill (2014).
Fisher, C. R. et al. Coral communities as indicators of ecosystem-level impacts of the deepwater horizon spill. Bioscience 64, 796–807 (2014).
Hsing, P.-Y. et al. Evidence of lasting impact of the Deepwater Horizon oil spill on a deep Gulf of Mexico coral community. Elem. Sci. Anthr 1, 000012 (2013).
White, H. K. et al. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico. Proc. Natl. Acad. Sci. 109, 20303–20308 (2012).
DeLeo, D. M., Ruiz-Ramos, D. V., Baums, I. B. & Cordes, E. E. Response of deep-water corals to oil and chemical dispersant exposure. Deep Sea Res. Part II Top. Stud. Oceanogr 1–11, https://doi.org/10.1016/j.dsr2.2015.02.028 (2015).
Frometa, J., DeLorenzo, M. E., Pisarski, E. C. & Etnoyer, P. J. Toxicity of oil and dispersant on the deep water gorgonian octocoral Swiftia exserta, with implications for the effects of the Deepwater Horizon oil spill. Mar. Pollut. Bull. 122, 91–99 (2017).
Form, A. U. & Riebesell, U. Acclimation to ocean acidification during long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Chang. Biol. 18, 843–853 (2012).
Hennige, S. J. et al. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep. Res. Part II Top. Stud. Oceanogr. 99, 27–35 (2014).
Movilla, J. et al. Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33, 675–686 (2014).
Georgian, S. E. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. https://doi.org/10.1111/maec.12373 (2016).
Kurman, M. D., Gómez, C. E., Georgian, S. E., Lunden, J. J. & Cordes, E. E. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico. Front. Mar. Sci. 4, 1–14 (2017).
Büscher, J. V., Form, A. U. & Riebesell, U. Interactive Effects of Ocean Acidification and Warming on Growth, Fitness and Survival of the Cold-Water Coral Lophelia pertusa under Different Food Availabilities. Front. Mar. Sci. 4, 1–14 (2017).
Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep. Res. Part II Top. Stud. Oceanogr. 99, 36–41 (2014).
Coelho, F. J. R. C. et al. Unraveling the interactive effects of climate change and oil contamination on laboratory-simulated estuarine benthic communities. Glob. Chang. Biol. 21, 1871–1886 (2015).
Coelho, F. J. R. C. et al. Multitaxon activity profiling reveals differential microbial response to reduced seawater pH and oil pollution. Mol. Ecol. 25, 4645–4659 (2016).
Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Frontiers in Marine Science 1, 74 (2014).
Singer, M. M. et al. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 40, 1007–1016 (2000).
Di Toro, D. M., McGrath, J. A. Y. & Stubblefield, W. A. Redicting The Toxicity of Neat and Weathered Crude Oil: Toxic Potential And The Toxicity of Saturated Mixtures. Environ. Toxicol. Chem. 26, 24–36 (2007).
Singer, M. M. et al. Comparison of acute aquatic effects of the oil dispersant Corexit 9500 with those of other Corexit series dispersants. Ecotoxicol. Environ. Saf. 35, 183–189 (1996).
Couillard, C. M., Lee, K., Légaré, B. & King, T. L. Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ. Toxicol. Chem. 24, 1496–1504 (2005).
Becker, E. L., Cordes, E. E., Macko, S. A. & Fisher, C. R. Importance of seep primary production to Lophelia pertusa and associated fauna in the Gulf of Mexico. Deep. Res. Part I Oceanogr. Res. Pap. 56, 786–800 (2009).
Morrison, C. L. et al. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean. Conserv. Genet. 12, 713–729 (2011).
Baums, I. B. et al. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata. Coral Reefs 32, 703–717 (2013).
Griffiths, J. S., Pan, T. C. F. & Kelly, M. W. Differential responses to ocean acidification between populations of Balanophyllia elegans corals from high and low upwelling environments. Mol. Ecol. 28, 2715–2730 (2019).
Kleindienst, S., Paul, J. H. & Joye, S. B. Using dispersants after oil spills: Impacts on the composition and activity of microbial communities. Nat. Rev. Microbiol. 13, 388–396 (2015).
Simister, R. L., Antzis, E. W. & White, H. K. Examining the diversity of microbes in a deep-sea coral community impacted by the Deepwater Horizon oil spill. Deep. Res. Part II Top. Stud. Oceanogr. 129, 157–166 (2016).
Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).
Wolff, N. H., Mumby, P. J., Devlin, M. & Anthony, K. R. N. Vulnerability of the Great Barrier Reef to climate change and local pressures. Glob. Chang. Biol. 24, 1978–1991 (2018).
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).
Lunden, J. J., Georgian, S. E. & Cordes, E. E. Aragonite saturation states at cold-water coral reefs structured by Lophelia pertusa in the northern Gulf of Mexico. Limnol. Oceanogr. 58, 354–362 (2013).
Georgian, S. E. et al. Oceanographic patterns and carbonate chemistry in the vicinity of cold-water coral reefs in the Gulf of Mexico: Implications for resilience in a changing ocean. Limnol. Oceanogr. n/a-n/a, https://doi.org/10.1002/lno.10242 (2015).
Lunden, J. J., Turner, J. M., McNicholl, C. G., Glynn, C. K. & Cordes, E. E. Design, development, and implementation of recirculating aquaria for maintenance and experimentation of deep-sea corals and associated fauna. Limnol. Oceanogr. Methods 12, 363–372 (2014).
Robbins, L. L., Hansen, M. E., Kleypas, J. A. & Meylan, S. C. CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone). Open-File Report, https://doi.org/10.3133/ofr20101280 (2010).
Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure. Limnol. Ocean. 18, 897–907 (1973).
Lee, K., Millero, F. J., Byrne, H., Feely, A. & Wanninkhof, R. Acid in 5 and. 27, 229–232 (2000).
Dickson, A. G., Sabine, C. L. & Christian, J. R. Guide to best Practices for Ocean CO2 Measurement. PICES Special Publication 3 (2007).
Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A, Oceanogr. Res. Pap. 34, 1733–1743 (1987).
Dickson, A. Standard potential of the reaction: AgCl(s) + 1/2 H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).
Brusca, R. C. & Brusca, G. J. H. Invertebrates. (Sinauer Associates, 1990).
Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. 296, 291–309 (2005).
Jatkar, A. A., Brown, B. E., Bythell, J. C., Guppy, R. & Morris, N. J. Coral Mucus: The Properties of Its Constituent Mucins. 883–888 (2010).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York (2016).
JMP®, Version 14. SAS Institute Inc., Cary, NC (1989–2019).
Source: Ecology - nature.com