in

Competing effects of soil fertility and toxicity on tropical greening

  • 1.

    Schimel, D. et al. Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology 21, 1762–1776 (2015).

  • 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993, https://doi.org/10.1126/science.1201609 (2011).

  • 3.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329, 834–838 (2010).

  • 4.

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annual Review of Environment and Resources 39, 125–159 (2014).

  • 5.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

  • 6.

    Huntzinger, D. N. et al. Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Scientific Reports 7, 1–8 (2017).

  • 7.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences USA 112, 436–441, https://doi.org/10.1073/pnas.1407302112 (2015).

  • 8.

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344, http://www.nature.com/nature/journal/v494/n7437/abs/nature11882.html#supplementary-information (2013).

  • 9.

    Sellers, P. J., Schimel, D. S., Moore, B., Liu, J. & Eldering, A. Observing carbon cycle–climate feedbacks from space. Proceedings of the National Academy of Sciences 115, 7868–7868, https://doi.org/10.1073/pnas.1716613115 (2018).

  • 10.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nature Climate Change 6, 791–795 (2016).

  • 11.

    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters 33, 1–4 (2006).

    • Article
    • Google Scholar
  • 12.

    Galvão, L. S. et al. On intra-annual EVI variability in the dry season of tropical forest: A case study with MODIS and hyperspectral data. Remote Sensing of Environment 115, 2350–2359 (2011).

  • 13.

    Lopes, A. P. et al. Leaf flush drives dry season green-up of the Central Amazon. Remote Sensing of Environment 182, 90–98 (2016).

  • 14.

    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).

  • 15.

    Asner, G. P. & Alencar, A. Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist 187, 569–578, https://doi.org/10.1111/j.1469-8137.2010.03310.x (2010).

  • 16.

    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

  • 17.

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10, 1135–1142 (2007).

  • 18.

    Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246, https://doi.org/10.5194/bg-9-2203-2012 (2012).

  • 19.

    Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Global Biogeochemical Cycles 26, GB3007, https://doi.org/10.1029/2011GB004252 (2012).

  • 20.

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).

  • 21.

    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan‐tropical analysis. Ecology Letters 14, 939–947 (2011).

  • 22.

    Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. Multi‐element regulation of the tropical forest carbon cycle. Frontiers in Ecology and the Environment 9, 9–17 (2011).

    • Article
    • Google Scholar
  • 23.

    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecological Monographs 89, 1–18 (2019).

  • 24.

    Cleveland, C. C., Townsend, A. R. & Schmidt, S. K. Phosphorus Limitation of Microbial Processes in Moist Tropical Forests: Evidence from Short-term Laboratory Incubations and Field Studies. Ecosystems 5, 680–691, https://doi.org/10.1007/s10021-002-0202-9 (2002).

  • 25.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecological Applications 20, 5–15, https://doi.org/10.1890/08-0127.1 (2010).

  • 26.

    Herbert, D. A. & Fownes, J. H. Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29, 223–235 (1995).

  • 27.

    Yang, X., Thornton, P., Ricciuto, D. & Post, W. The role of phosphorus dynamics in tropical forests–a modeling study using CLM-CNP. Biogeosciences 11, 1667–1681 (2014).

  • 28.

    McGroddy, M., Silver, W., De Oliveira, R., De Mello, W. & Keller, M. Retention of phosphorus in highly weathered soils under a lowland Amazonian forest ecosystem. Journal of Geophysical Research: Biogeosciences 113, 1–11 (2008).

  • 29.

    Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences 101, 11001–11006, https://doi.org/10.1073/pnas.0403588101 (2004).

  • 30.

    Turner, B. L., Brenes-Arguedas, T. & Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).

  • 31.

    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

  • 32.

    Matson, P. A., McDowell, W. H., Townsend, A. R. & Vitousek, P. M. The globalization of N deposition: ecosystem consequences in tropical environments. Biogeochemistry 46, 67–83 (1999).

    • CAS
    • Google Scholar
  • 33.

    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87–115 (1991).

    • Article
    • Google Scholar
  • 34.

    Fisher, J. B. et al. Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172, 889–902, https://doi.org/10.1007/s00442-012-2522-6 (2013).

  • 35.

    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications 14, 150–163 (2004).

    • Article
    • Google Scholar
  • 36.

    Cusack, D. F., Silver, W. L., Torn, M. S. & McDowell, W. H. Effects of nitrogen additions on above-and belowground carbon dynamics in two tropical forests. Biogeochemistry 104, 203–225 (2011).

  • 37.

    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625, https://doi.org/10.1890/10-1558.1 (2011).

  • 38.

    Powers, J. S. & Salute, S. Macro-and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant and Soil 346, 245–257 (2011).

  • 39.

    Yavitt, J. B., Harms, K. E., Garcia, M. N., Mirabello, M. J. & Wright, S. J. Soil fertility and fine root dynamics in response to 4 years of nutrient (N, P, K) fertilization in a lowland tropical moist forest, Panama. Austral Ecology 36, 433–445 (2011).

    • Article
    • Google Scholar
  • 40.

    Bern, C. R., Townsend, A. R. & Farmer, G. L. Unexpected dominance of parent‐material strontium in a tropical forest on highly weathered soils. Ecology 86, 626–632 (2005).

    • Article
    • Google Scholar
  • 41.

    Baribault, T. W., Kobe, R. K. & Finley, A. O. Tropical tree growth is correlated with soil phosphorus, potassium, and calcium, though not for legumes. Ecological Monographs 82, 189–203 (2012).

    • Article
    • Google Scholar
  • 42.

    Cusack, D. F. et al. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics 54, 523–610 (2016).

  • 43.

    Cusack, D. F., Markesteijn, L., Condit, R., Lewis, O. T. & Turner, B. L. Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry 137, 253–266 (2018).

  • 44.

    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecology Letters 11, 35–43, https://doi.org/10.1111/j.1461-0248.2007.01124.x (2008).

  • 45.

    Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118, https://doi.org/10.1890/0012-9658(2007)88[107:cofnri]2.0.co;2 (2007).

  • 46.

    Malhi, Y. & Phillips, O. L. Tropical forests and global atmospheric change: a synthesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359, 549–555 (2004).

  • 47.

    Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment 98, 164–176 (2005).

  • 48.

    Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Global Change Biology 22, 2596–2607, https://doi.org/10.1111/gcb.13264 (2016).

  • 49.

    Fisher, J. B. et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research 53, 2618–2626, https://doi.org/10.1002/2016WR020175 (2017).

  • 50.

    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sensing of Environment 83, 135–148 (2002).

  • 51.

    Hulley, G. C. & Hook, S. J. Generating consistent land surface temperature and emissivity products between ASTER and MODIS data for earth science research. Geoscience and Remote Sensing, IEEE Transactions on 49, 1304–1315 (2011).

  • 52.

    Engelbrecht, B. M. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

  • 53.

    Condit, R., Engelbrecht, B. M., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences 110, 5064–5068 (2013).

  • 54.

    Turner, B. L. & Engelbrecht, B. M. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315 (2011).

  • 55.

    Pyke, C. R., Condit, R., Aguilar, S. & Lao, S. Floristic composition across a climatic gradient in a neotropical lowland forest. Journal of Vegetation Science 12, 553–566 (2001).

    • Article
    • Google Scholar
  • 56.

    Windsor, D., Rand, A. & Rand, W. Caracteristicas de la precipitacion en la isla de Barro Colorado. Ecología de un bosque tropical: ciclos estacionales y cambios a largo plazo. Smithsonian Tropical Research Institute, Balboa, 53-71 (1990).

  • 57.

    Xie, P. & Arkin, P. A. Global monthly precipitation estimates from satellite-observed outgoing longwave radiation. Journal of Climate 11, 137–164 (1998).

  • 58.

    Medvigy, D. & Beaulieu, C. Trends in daily solar radiation and precipitation coefficients of variation since 1984. Journal of Climate 25, 1330–1339 (2012).

  • 59.

    Liebmann, B. et al. A comparison of rainfall, outgoing longwave radiation, and divergence over the Amazon Basin. Journal of Climate 11, 2898–2909 (1998).

  • 60.

    Turner, B. L., Yavitt, J. B., Harms, K. E., Garcia, M. N. & Wright, S. J. Seasonal changes in soil organic matter after a decade of nutrient addition in a lowland tropical forest. Biogeochemistry 123, 221–235 (2015).

  • 61.

    Stewart, R. & Stewart, J. Geologic map of the Panama Canal and vicinity, Republic of Panama (1980).

  • 62.

    Woodring, W. P. Geology of Barro Colorado Island, Canal Zone (1958).

  • 63.

    Chave, J. et al. Error propagation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359, 409–420 (2004).

  • 64.

    Roy, D. P. et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment 145, 154–172 (2014).

  • 65.

    Liang, S. Numerical experiments on the spatial scaling of land surface albedo and leaf area index. Remote Sensing Reviews 19, 225–242 (2000).

  • 66.

    Zanter, K. Landsat 8 (L8) data users handbook. Landsat Science Official Website. Available online, https://landsat.usgs.gov/landsat-8-l8-data-users-handbook (accessed on 20 January 2018) (2016).

  • 67.

    Justice, C. et al. An overview of MODIS Land data processing and product status. Remote Sensing of Environment 83, 3–15 (2002).

  • 68.

    Entekhabi, D. et al. The Soil Moisture Active Passive (SMAP) Mission. Proceedings of the IEEE 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918 (2010).

    • Article
    • Google Scholar
  • 69.

    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sensing of Environment 147, 1–12 (2014).

  • 70.

    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).

  • 71.

    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, 1–12, https://doi.org/10.1029/2011jg001708 (2011).

    • Article
    • Google Scholar
  • 72.

    Pearlman, J. S. et al. Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing 41, 1160–1173 (2003).

  • 73.

    Huete, A. R., Liu, H. & van Leeuwen, W. J. In Geoscience and Remote Sensing, 1997. IGARSS’97. Remote Sensing-A Scientific Vision for Sustainable Development., 1997 IEEE International. 1966-1968 (IEEE).

  • 74.

    Asner, G. P., Scurlock, J. M. & A. Hicke, J. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Global Ecology and Biogeography 12, 191–205 (2003).

    • Article
    • Google Scholar
  • 75.

    Dent, D. H., Bagchi, R., Robinson, D., Majalap-Lee, N. & Burslem, D. F. Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant and Soil 288, 197–215 (2006).

  • 76.

    Sayer, E. J. & Tanner, E. V. Experimental investigation of the importance of litterfall in lowland semi‐evergreen tropical forest nutrient cycling. Journal of Ecology 98, 1052–1062 (2010).

    • Article
    • Google Scholar
  • 77.

    Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species‐rich, tropical forests. Ecology 99, 1129–1138 (2018).

  • 78.

    Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6, 1335–1372 (1985).

  • 79.

    Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62, 241–252 (1997).

  • 80.

    Powers, J. S. & Schlesinger, W. H. Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma 109, 165–190 (2002).

  • 81.

    Cronan, C. S. & Grigal, D. F. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality 24, 209–226 (1995).

  • 82.

    Rustad, L. E. & Cronan, C. S. Cycling of aluminum and nutrients in litterfall of a red spruce (Picea rubens Sarg.) stand in Maine. Canadian Journal of Forest Research 19, 18–23 (1989).

    • Article
    • Google Scholar
  • 83.

    Poschenrieder, C., Gunsé, B., Corrales, I. & Barceló, J. A glance into aluminum toxicity and resistance in plants. Science of the Total Environment 400, 356–368 (2008).

  • 84.

    Roy, A. K., Sharma, A. & Talukder, G. Some aspects of aluminum toxicity in plants. The Botanical Review 54, 145–178 (1988).

    • Article
    • Google Scholar
  • 85.

    Foy, C., Chaney, R. T. & White, M. The physiology of metal toxicity in plants. Annual Review of Plant Physiology 29, 511–566 (1978).

  • 86.

    Delhaize, E. & Ryan, P. R. Aluminum toxicity and tolerance in plants. Plant Physiology 107, 315–321 (1995).

  • 87.

    Ribeiro, M. A. Q. et al. Aluminum effects on growth, photosynthesis, and mineral nutrition of Cacao genotypes. J. Plant Nutr. 36, 1161–1179, https://doi.org/10.1080/01904167.2013.766889 (2013).

  • 88.

    Zemunik, G., Davies, S. J. & Turner, B. L. Soil drivers of local-scale tree growth in a lowland tropical forest. Ecology 99, 2844–2852, https://doi.org/10.1002/ecy.2532 (2018).

  • 89.

    Kochian, L. V., Hoekenga, O. A. & Pineros, M. A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55, 459–493 (2004).

  • 90.

    Ren, H. et al. The role of autophagy in alleviating damage of aluminum stress in Arabidopsis thaliana. Plant Growth Regul. 79, 167–175, https://doi.org/10.1007/s10725-015-0122-2 (2016).

  • 91.

    Chapin, F. S. III, Vitousek, P. M. & Cleve, K. V. The nature of nutrient limitation in plant communities. The American Naturalist 127, 48–58 (1986).

    • Article
    • Google Scholar
  • 92.

    Attiwill, P. M. & Adams, M. A. Nutrient cycling in forests. New Phytologist 124, 561–582 (1993).

  • 93.

    McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C:N:P Stoichiometry in Forests Worldwide: Implications of Terrestrial Redfield-Type Ratios. Ecology 85, 2390–2401, https://doi.org/10.1890/03-0351 (2004).

    • Article
    • Google Scholar
  • 94.

    Berg, B. & Laskowski, R. Litter fall. Advances in Ecological Research 38, 19–71 (2005).

    • Article
    • Google Scholar
  • 95.

    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Functional Ecology 22, 990–999 (2008).

    • Article
    • Google Scholar
  • 96.

    Fisher, J. B., Huntzinger, D. N., Schwalm, C. R. & Sitch, S. Modeling the terrestrial biosphere. Annual Review of Environment and Resources 39, 91–123 (2014).

    • Article
    • Google Scholar
  • 97.

    Allen, K. E., Fisher, J. B., R.P., P., Power, J. & Brzostek, E. R. Modeling the carbon cost of plant nitrogen and phosphorus uptake across temperate and tropical forests. Frontiers in Forests and Global Change, in press (2020).

  • 98.

    Fleischer, K. et al. Amazon forest response to CO 2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience 12, 736–741 (2019).

  • 99.

    Chambers, J. et al. Next Generation Ecosystem Experiment (NGEE) Tropics. US DOE NGEE Tropics White Paper (2014).

  • 100.

    Luo, Y. et al. A framework for benchmarking land models. Biogeosciences 9, 3857–3874, https://doi.org/10.5194/bg-9-3857-2012 (2012).

  • 101.

    Kelley, D. I. et al. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 10, 3313–3340, https://doi.org/10.5194/bg-10-3313-2013 (2013).

  • 102.

    Fisher, J. B. et al. The land-atmosphere water flux in the tropics. Global Change Biology 15, 2694–2714 (2009).

  • 103.

    Polhamus, A., Fisher, J. B. & Tu, K. P. What controls the error structure in evapotranspiration models? Agricultural and Forest Meteorology 169, 12–24, https://doi.org/10.1016/j.agrformet.2012.10.002 (2013).

  • 104.

    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the International Space Station. Water Resources Research, in press (2020).

  • 105.

    Santiago, L. S., Schuur, E. A. & Silvera, K. Nutrient cycling and plant–soil feedbacks along a precipitation gradient in lowland Panama. Journal of Tropical Ecology 21, 461–470 (2005).

    • Article
    • Google Scholar
  • 106.

    Posada, J. M. & Schuur, E. A. Relationships among precipitation regime, nutrient availability, and carbon turnover in tropical rain forests. Oecologia 165, 783–795 (2011).

  • 107.

    Bohlman, S. A. Landscape patterns and environmental controls of deciduousness in forests of central Panama. Global Ecology and Biogeography 19, 376–385 (2010).

    • Article
    • Google Scholar
  • 108.

    Colliander, A. et al. Spatial downscaling of SMAP soil moisture using MODIS land surface temperature and NDVI during SMAPVEX15. IEEE Geoscience and Remote Sensing Letters 14, 2107–2111 (2017).

  • 109.

    FAO-UNESCO. The FAO-UNESCO Soil Map of the World. (Food and Agriculture Organization of the United Nations, 1968).

  • 110.

    Sanchez, P. A. et al. Digital soil map of the world. Science 325, 680–681 (2009).

  • 111.

    Nachtergaele, F. et al. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1-6 August 2010. 34-37.

  • 112.

    Le Quéré, C., et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci 2, 831-836, http://www.nature.com/ngeo/journal/v2/n12/suppinfo/ngeo689_S1.html (2009).

  • 113.

    Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156 (1982).

  • 114.

    National Academies of Sciences, Engineering & Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. (The National Academies Press, 2018).

  • 115.

    Higgins, M. A. et al. Linking imaging spectroscopy and LiDAR with floristic composition and forest structure in Panama. Remote Sensing of Environment 154, 358–367 (2014).


  • Source: Ecology - nature.com

    Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere