in

Competitive traits of coral symbionts may alter the structure and function of the microbiome

  • 1.

    Bestion E, García-Carreras B, Schaum C-E, Pawar S, Yvon-Durocher G. Metabolic traits predict the effects of warming on phytoplankton competition. Ecol Lett. 2018;21:655–64.

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Burson A, Stomp M, Greenwell E, Grosse J, Huisman J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community. Ecology. 2018;99:1108–18.

    PubMed  Google Scholar 

  • 3.

    Tilman D, Mattson M, Langer S. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol Oceanogr. 1981;26:1020–33.

    Google Scholar 

  • 4.

    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol. 2018;28:2570–80.e6.

    CAS  PubMed  Google Scholar 

  • 5.

    Muscatine L, McCloskey LR, Marian RE. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26:601–11.

    CAS  Google Scholar 

  • 6.

    Tanaka Y, Suzuki A, SAKAI K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. 2018;12:860–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral-dinoflagellate symbiosis. ISME J. 2012;6:1314–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Fine M, et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc Biol Sci. 2020;287:20200049.

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Liefer JD, Garg A, Fyfe MH, Irwin AJ, Benner I, Brown CM, et al. The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. Front Microbiol. 2019;10:763.

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Talmy D, Blackford J, Hardman-Mountford NJ, Polimene L, Follows MJ, Geider RJ. Flexible C:N ratio enhances metabolism of large phytoplankton when resource supply is intermittent. Biogeosciences. 2014;11:4881–95.

    Google Scholar 

  • 11.

    Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc Biol Sci. 2004;271:1757–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Kemp DW, Hernández-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral beaching event. Limnol Oceanogr. 2014;59:788–97.

    CAS  Google Scholar 

  • 13.

    Rowan R, Knowlton N, Baker A, Jara J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature. 1997;388:265–9.

    CAS  PubMed  Google Scholar 

  • 14.

    Wangpraseurt D, Larkum AWD, Ralph PJ, Kühl M. Light gradients and optical microniches in coral tissues. Front Microbiol. 2012;3:316.

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC. The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Micro Ecol. 2010;60:250–63.

    Google Scholar 

  • 16.

    Lee MJ, Jeong HJ, Jang SH, Lee SY, Kang NS, Lee KH, et al. Most low-abundance ‘background’ Symbiodinium spp. are transitory and have minimal functional significance for symbiotic corals. Micro Ecol. 2016;71:771–83.

    Google Scholar 

  • 17.

    Ziegler M, Eguíluz VM, Duarte CM, Voolstra CR. Rare symbionts may contribute to the resilience of coral-algal assemblages. ISME J. 2018;12:161–72.

    PubMed  Google Scholar 

  • 18.

    Thornhill D, LaJeunesse T, Kemp D, Fitt W, Schmidt G. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol. 2006;148:711–22.

    Google Scholar 

  • 19.

    Baker A, Starger C, McClanahan T, Glynn P. Corals’ adaptive response to climate change. Nature. 2004;430:741.

    CAS  PubMed  Google Scholar 

  • 20.

    Sogin EM, Putnam HM, Nelson CE, Anderson P, Gates RD. Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environ Microbiol Rep. 2017;9:310–5.

    PubMed  Google Scholar 

  • 21.

    Tropini C, Earle KA, Huang KC, Sonnenburg JL. The gut microbiome: connecting spatial organization to function. Cell Host Microbe. 2017;21:433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    McIlroy SE, Smith GJ, Geller JB. FISH-Flow: a quantitative molecular approach for describing mixed clade communities of Symbiodinium. Coral Reefs. 2014;33:157–67.

    Google Scholar 

  • 23.

    Kang Y, Kudela RM, Gobler CJ. Quantifying nitrogen assimilation rates of individual phytoplankton species and plankton groups during harmful algal blooms via sorting flow cytometry. Limnol Oceanogr Methods. 2017;15:706–21.

    CAS  Google Scholar 

  • 24.

    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.

    CAS  PubMed  Google Scholar 

  • 25.

    Edwards KF, Thomas MK, Klausmeier CA, Litchman E. Phytoplankton growth and the interaction of light and temperature: a synthesis at the species and community level. Limnol Oceanogr. 2016;61:1232–44.

    Google Scholar 

  • 26.

    Cunning R, Yost DM, Guarinello ML, Putnam HM, Gates RD. Variability of Symbiodinium communities in waters, sediments, and corals of thermally distinct reef pools in American Samoa. PLoS One. 2015;10:e0145099.

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Weis VM. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol. 2008;211:3059–66.

    CAS  PubMed  Google Scholar 

  • 28.

    Suggett DJ, Warner ME, Leggat W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol Evol. 2017;32:735–45.

    PubMed  Google Scholar 

  • 29.

    Smith G, Muscatine L. Cell cycle of symbiotic dinoflagellates: variation in G(1) phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol. 1999;134:405–18.

    Google Scholar 

  • 30.

    Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis. ISME J. 2018;12:921–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Tilman D. The resource-ratio hypothesis of plant succession. Am Naturalist. 1985;125:827–52.

    Google Scholar 

  • 32.

    Falkowski PG. Rationalizing elemental ratios in unicellular algae. J Phycol. 2000;36:3–6.

    CAS  Google Scholar 

  • 33.

    Poulson-Ellestad KL, Jones CM, Roy J, Viant MR, Fernández FM, Kubanek J, et al. Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proc Natl Acad Sci. 2014;111:9009–14.

    CAS  PubMed  Google Scholar 

  • 34.

    Baumgarten S, Bayer T, Aranda M, Liew YJ, Carr A, Micklem G, et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics. 2013;14:704–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Silverstein RN, Cunning R, Baker AC. Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment. J Exp Biol. 2017;220:1192–6.

    PubMed  Google Scholar 

  • 36.

    Bay LK, Doyle J, Logan M, Berkelmans R. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. R Soc Open Sci. 2016;3:160322.

    PubMed  PubMed Central  Google Scholar 

  • 37.

    LaJeunesse T, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt G, et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser. 2004;284:147–61.

    Google Scholar 

  • 38.

    Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP. Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs. 2009;28:405–14.

    Google Scholar 

  • 39.

    Baker DM, Andras JP, Jordán-Garza AG, Fogel ML. Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades. ISME J. 2013;7:1248–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Little A, Van Oppen M, Willis B. Flexibility in algal endosymbioses shapes growth in reef corals. Science. 2004;304:1492–4.

    CAS  PubMed  Google Scholar 

  • 41.

    Berkelmans R, Van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc Biol Sci. 2006;273:2305–12.

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Jones A, Berkelmans R. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types. PLoS ONE. 2010;5:e10437.

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Abrego D, Ulstrup KE, Willis BL, Van Oppen MJH. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc Biol Sci. 2008;275:2273–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    McIlroy SE, Cunning R, Baker AC, Coffroth MA. Competition and succession among coral endosymbionts. Ecol Evol. 2019;9:12767–78.

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Van Oppen MJH, Oliver JK, Putnam HM, Gates RD. Building coral reef resilience through assisted evolution. Proc Natl Acad Sci. 2015;112:2307–13.

    PubMed  Google Scholar 

  • 46.

    Morgans CA, Hung JY, Bourne DG, Quigley KM. Symbiodiniaceae probiotics for use in bleaching recovery. Restor Ecol. 2020;28:282–8.

    Google Scholar 

  • 47.

    Peixoto RS, Rosado PM, de Assis Leite DC, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol. 20107;8. e-pub ahead of print. https://doi.org/10.3389/fmicb.2017.00341.

  • 48.

    Bauer MA, Kainz K, Carmona-Gutierrez D, Madeo F. Microbial wars: competition in ecological niches and within the microbiome. Micro Cell. 2018;5:215–9.

    Google Scholar 

  • 49.

    Douglas AE. How multi-partner endosymbioses function. Nat Rev Microbiol. 2016;14:731–43.

    CAS  PubMed  Google Scholar 

  • 50.

    Ainsworth TD, Fine M, Blackall LL, Hoegh-Guldberg O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl Environ Micro. 2006;72:3016–20.

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations