in

Consequences of different sample drying temperatures for accuracy of biomass inventories in forest ecosystems

  • 1.

    Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2013).

    Google Scholar 

  • 3.

    Sohngen, B. & Tian, X. Global climate change impacts on forests and markets. For. Policy Econ. 72, 18–26 (2016).

    Article  Google Scholar 

  • 4.

    Fawzy, S., Osman, A. I., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01059-w (2020).

    Article  Google Scholar 

  • 5.

    Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Osman, A. I. Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew. Energy 146, 484–496 (2020).

    CAS  Article  Google Scholar 

  • 8.

    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 9.

    Qambrani, N. A., Rahman, Md. M., Won, S., Shim, S. & Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: a review. Renew. Sustain. Energy Rev. 79, 255–273 (2017).

    CAS  Article  Google Scholar 

  • 10.

    Choi, S. H. & Manousiouthakis, V. I. On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Comput. Chem. Eng. 140, 106942 (2020).

    CAS  Article  Google Scholar 

  • 11.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. For. Ecol. Manag. 93, 161–169 (1997).

    Article  Google Scholar 

  • 13.

    Martin, A. R. & Thomas, S. C. A reassessment of carbon content in tropical trees. PLoS ONE 6, e23533 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K. & Horodecki, P. Tree- and stand-level biomass estimation in a Larix decidua Mill. Chronosequence. Forests 9, 587 (2018).

    Article  Google Scholar 

  • 15.

    Teobaldelli, M., Somogyi, Z., Migliavacca, M. & Usoltsev, V. A. Generalized functions of biomass expansion factors for conifers and broadleaved by stand age, growing stock and site index. For. Ecol. Manag. 257, 1004–1013 (2009).

    Article  Google Scholar 

  • 16.

    Forrester, D. I. et al. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160–175 (2017).

    Article  Google Scholar 

  • 17.

    Jagodziński, A. M. et al. How do tree stand parameters affect young Scots pine biomass? Allometric equations and biomass conversion and expansion factors. For. Ecol. Manag. 409, 74–83 (2018).

    Article  Google Scholar 

  • 18.

    Picard, N., Saint-Andre, L. & Henry, M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. (Food and Agricultural Organization of the United Nations and Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 2012).

  • 19.

    Grote, R., Schuck, J., Block, J. & Pretzsch, H. Oberirdische holzige Biomasse in Kiefern-/Buchen- und Eichen-/Buchen-Mischbeständen. Forstwiss. Cent. Ver. Mit Tharandter Forstl. Jahrb. 122, 287–301 (2003).

    Google Scholar 

  • 20.

    Zhang, L., Zhang, Y., Wang, H., Zou, J. & Siemann, E. Chinese Tallow trees (Triadica sebifera) from the invasive range outperform those from the native range with an active soil community or phosphorus fertilization. PLoS ONE 8, e74233 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Frouz, J. et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84, 233–239 (2015).

    Article  Google Scholar 

  • 22.

    Mangla, S., Sheley, R. L., James, J. J. & Radosevich, S. R. Intra and interspecific competition among invasive and native species during early stages of plant growth. Plant Ecol. 212, 531–542 (2011).

    Article  Google Scholar 

  • 23.

    Gómez-García, E., Crecente-Campo, F. & Diéguez-Aranda, U. Tarifas de biomasa aérea para abedul (Betula pubescens Ehrh.) y roble (Quercus robur L.) en el noroeste de España. Madera Bosques 19, 71–91 (2013).

    Google Scholar 

  • 24.

    Albert, K., Annighöfer, P., Schumacher, J. & Ammer, C. Biomass equations for seven different tree species growing in coppice-with-standards forests in Central Germany. Scand. J. For. Res. 29, 210–221 (2014).

    Article  Google Scholar 

  • 25.

    Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, 605–624 (2008).

    Article  Google Scholar 

  • 26.

    Uri, V. et al. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. For. Ecol. Manag. 267, 117–126 (2012).

    Article  Google Scholar 

  • 27.

    Sellin, A. et al. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula). Front. Plant Sci. 6, 1–10 (2015).

    Article  Google Scholar 

  • 28.

    Xiao, C.-W. et al. Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol. 23, 505–516 (2003).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Yuste, J. C. et al. Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree Physiol. 25, 701–712 (2005).

    CAS  Article  Google Scholar 

  • 30.

    Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 84–93 (2006).

    Article  Google Scholar 

  • 31.

    Repola, J. & AhnlundUlvcrona, K. Modelling biomass of young and dense Scots pine (Pinus sylvestris L.) dominated mixed forests in northern Sweden. Silva Fenn. 48, 1190 (2014).

    Article  Google Scholar 

  • 32.

    Ozolinčius, R., Mikšys, V. & Stakénas, V. Above-ground phytomass and light regime in Norway spruce stands planted with different initial density. Biomass Bioenergy 11, 201–206 (1996).

    Article  Google Scholar 

  • 33.

    Johansson, T. Sprouting ability and biomass production of downy and silver birch stumps of different diameters. Biomass Bioenergy 32, 944–951 (2008).

    Article  Google Scholar 

  • 34.

    Pajtík, J., Konôpka, B. & Lukac, M. Individual biomass factors for beech, oak and pine in Slovakia: a comparative study in young naturally regenerated stands. Trees 25, 277–288 (2011).

    Article  Google Scholar 

  • 35.

    Gezici-Koç, Ö, Erich, S. J. F., Huinink, H. P., van der Ven, L. G. J. & Adan, O. C. G. Bound and free water distribution in wood during water uptake and drying as measured by 1D magnetic resonance imaging. Cellulose 24, 535–553 (2017).

    Article  CAS  Google Scholar 

  • 36.

    Samuelsson, R., Nilsson, C. & Burvall, J. Sampling and GC-MS as a method for analysis of volatile organic compounds (VOC) emitted during oven drying of biomass materials. Biomass Bioenergy 30, 923–928 (2006).

    CAS  Article  Google Scholar 

  • 37.

    Samuelsson, R., Burvall, J. & Jirjis, R. Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 30, 929–934 (2006).

    CAS  Article  Google Scholar 

  • 38.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, 2020).

  • 39.

    Jabłoński, M. & Budniak, P. Estimating above-ground woody biomass of forests in Poland for UNECE/FAO and UNFCCC reporting. For. Res. Pap. 75, 277–289 (2014).

    Google Scholar 

  • 40.

    Claessens, H., Oosterbaan, A., Savill, P. & Rondeux, J. A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83, 163–175 (2010).

    Article  Google Scholar 

  • 41.

    Horodecki, P. & Jagodziński, A. M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 406, 1–11 (2017).

    Article  Google Scholar 

  • 42.

    Horodecki, P., Nowiński, M. & Jagodziński, A. M. Advantage of mixed tree stands in restoration of upper soil layers on post-mining sites: a five-year leaf litter decomposition experiment. Land Degrad. Dev. 30, 3–13 (2019).

    Article  Google Scholar 

  • 43.

    Repola, J. Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density. Silva Fenn. 40, 4 (2006).

    Google Scholar 

  • 44.

    Poorter, H. et al. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytol. 208, 736–749 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Annighöfer, P. et al. Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur. J. For. Res. 135, 313–329 (2016).

    Article  Google Scholar 

  • 46.

    Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 201770 (2017).

    Article  Google Scholar 

  • 47.

    Muukkonen, P. Generalized allometric volume and biomass equations for some tree species in Europe. Eur. J. For. Res. 126, 157–166 (2007).

    Article  Google Scholar 

  • 48.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Flores, O. et al. An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecol. Evol. 4, 2799–2811 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Paź-Dyderska, S., Dyderski, M. K., Nowak, K. & Jagodziński, A. M. On the sunny side of the crown: quantification of intra-canopy SLA variation among 179 taxa. For. Ecol. Manag. 472, 118254 (2020).

    Article  Google Scholar 

  • 51.

    Zanne, A. E. et al. Global Wood Density Database. (2009) https://datadryad.org/handle/10255/dryad.235.

  • 52.

    Kleyer, M. et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008).

    Article  Google Scholar 

  • 53.

    FAO. Global Forest Resources Assessment. (UN Food and Agriculture Organization, 2015).

  • 54.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 55.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).

    Article  Google Scholar 

  • 56.

    Bartoń, K. MuMIn: Multi-Model Inference. (2017). https://cran.r-project.org/package=MuMIn (Accessed 12 Aug 2020).

  • 57.

    Jagodziński, A. M., Dyderski, M. K., Gęsikiewicz, K. & Horodecki, P. Effects of stand features on aboveground biomass and biomass conversion and expansion factors based on a Pinus sylvestris L. chronosequence in Western Poland. Eur. J. For. Res. 138, 673–683 (2019).

    Article  Google Scholar 

  • 58.

    Jagodziński, A. M., Dyderski, M. K. & Horodecki, P. Differences in biomass production and carbon sequestration between highland and lowland stands of Picea abies (L.) H. Karst. and Fagus sylvatica L. For. Ecol. Manag. 474, 118329 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment