in

Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda)

  • 1.

    Adams, M., Raadik, T. A., Burridge, C. P. & Georges, A. Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?. Syst. Biol. 63, 518–533 (2014).

    PubMed  Article  Google Scholar 

  • 2.

    Pérez-Ponce de León, G. & Poulin, R. Taxonomic distribution of cryptic diversity among metazoans: not so homogeneous after all. Biol. Lett. 12, 20160371. https://doi.org/10.1098/rsbl.2016.0371 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 3.

    Pfenninger, M. & Schwenk, K. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol. Biol. 7, 121. https://doi.org/10.1186/1471-2148-7-121 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Keshavmurthy, S. et al. DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities. Sci. Rep. 3, 1520. https://doi.org/10.1038/srep01520 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 785–810 (2016).

    Article  Google Scholar 

  • 6.

    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).

    PubMed  Article  Google Scholar 

  • 7.

    Brodersen, J. & Seehausen, O. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol. Appl. 7, 968–983 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2018).

    Article  Google Scholar 

  • 9.

    Galipaud, M., Gauthey, Z., Turlin, J., Bollache, L. & Lagrue, C. Mate choice and male–male competition among morphologically cryptic but genetically divergent amphipod lineages. Behav. Ecol. Sociobiol. 69, 1907–1916 (2015).

    Article  Google Scholar 

  • 10.

    Galipaud, M., Bollache, L. & Lagrue, C. Variations in infection levels and parasite-induced mortality among sympatric cryptic lineages of native amphipods and a congeneric invasive species: Are native hosts always losing?. Int. J. Parasitol. Parasites Wildl. 6, 439–447 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Westram, A. M., Baumgartner, C., Keller, I. & Jokela, J. Are cryptic host species also cryptic to parasites? Host specificity and geographical distribution of acanthocephalan parasites infecting freshwater Gammarus. Infect. Genet. Evol. 11, 1083–1090 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Fišer, Ž, Altermatt, F., Zakšek, V., Knapič, T. & Fišer, C. Morphologically cryptic amphipod species are “ecological clones” at regional but not at local scale: a case study of four Niphargus species. PLoS ONE 10, e0134384. https://doi.org/10.1371/journal.pone.0134384 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Eisenring, M., Altermatt, F., Westram, A. M. & Jokela, J. Habitat requirements and ecological niche of two cryptic amphipod species at landscape and local scales. Ecosphere 7, e01319. https://doi.org/10.1002/ecs2.1319 (2016).

    Article  Google Scholar 

  • 14.

    Westram, A. M., Jokela, J. & Keller, I. Hidden biodiversity in an ecologically important freshwater amphipod: Differences in genetic structure between two cryptic species. PLoS ONE 8, e69576. https://doi.org/10.1371/journal.pone.0069576 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Mutanen, M., Kaila, L. & Tabell, J. Wide-ranging barcoding aids discovery of one-third increase of species richness in presumably well-investigated moths. Sci. Rep. 3, 2901. https://doi.org/10.1038/srep02901 (2013).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Cook, B. D., Page, T. J. & Hughes, J. M. Importance of cryptic species for identifying ‘representative’ units of biodiversity for freshwater conservation. Biol. Conserv. 141, 2821–2831 (2008).

    Article  Google Scholar 

  • 17.

    Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).

    PubMed  Article  Google Scholar 

  • 18.

    Bálint, M., Barnard, P. C., Schmitt, T., Ujvárosi, L. & Popescu, O. Differentiation and speciation in mountain streams: a case study in the caddisfly Rhyacophila aquitanica (Trichoptera). J. Zool. Syst. Evol. Res. 46, 340–345 (2008).

    Article  Google Scholar 

  • 19.

    Major, K., Soucek, D. J., Giordano, R., Wetzel, M. J. & Soto-Adames, F. The common ecotoxicology laboratory strain of Hyalella azteca is genetically distinct from most wild strains sampled in eastern North America: common lab strain of H. azteca is distinct from wild strains. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.2355 (2013).

    Article  PubMed  Google Scholar 

  • 20.

    Feckler, A., Thielsch, A., Schwenk, K., Schulz, R. & Bundschuh, M. Differences in the sensitivity among cryptic lineages of the Gammarus fossarum complex. Sci. Total Environ. 439, 158–164 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Feckler, A. et al. Cryptic species diversity: an overlooked factor in environmental management?. J. Appl. Ecol. 51, 958–967 (2014).

    Article  Google Scholar 

  • 22.

    Caputo, D. R., Robson, S. C., Werner, I. & Ford, A. T. Complete transcriptome assembly and annotation of a critically important amphipod species in freshwater ecotoxicological risk assessment: Gammarus fossarum. Environ. Int. 137, 105319 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Cogne, Y. et al. De novo transcriptomes of 14 gammarid individuals for proteogenomic analysis of seven taxonomic groups. Sci. Data 6, 184. https://doi.org/10.1038/s41597-019-0192-5 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Costa-Silva, G. J., Rodriguez, M. S., Roxo, F. F., Foresti, F. & Oliveira, C. Using different methods to access the difficult task of delimiting species in a complex Neotropical hyperdiverse group. PLoS ONE 10, e0135075 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Dincă, V. et al. DNA barcode reference library for Iberian butterflies enables a continental-scale preview of potential cryptic diversity. Sci. Rep. 5, 12395. https://doi.org/10.1371/journal.pone.0135075 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Trontelj, P. et al. A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts?. Freshw. Biol. 54, 727–744 (2009).

    CAS  Article  Google Scholar 

  • 27.

    Jackson, J. K. et al. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshw. Sci. 33, 312–324 (2014).

    Article  Google Scholar 

  • 28.

    Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ https://doi.org/10.7717/peerj.3016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlw025 (2017).

    Article  Google Scholar 

  • 30.

    Hogg, I. D., Larose, C., de Lafontaine, Y. & Doe, K. G. Genetic evidence for a Hyalella species complex within the Great Lakes—St. Lawrence River drainage basin: implications for ecotoxicology and conservation biology. Can. J. Zool. 76, 1134–1140 (1998).

    Article  Google Scholar 

  • 31.

    Hogg, I. D., Stevens, M. I., Schnabel, K. E. & Ann Chapman, M. Deeply divergent lineages of the widespread New Zealand amphipod Paracalliope fluviatilis revealed using allozyme and mitochondrial DNA analyses. Freshw. Biol. 51, 236–248 (2006).

    CAS  Article  Google Scholar 

  • 32.

    Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarusbalcanicus Schäferna, (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248 (2014).

    Article  Google Scholar 

  • 34.

    Murphy, N. P., Adams, M., Guzik, M. T. & Austin, A. D. Extraordinary micro-endemism in Australian desert spring amphipods. Mol. Phylogenet. Evol. 66, 645–653 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Murphy, N. P., King, R. A. & Delean, S. Species, ESUs or populations? Delimiting and describing morphologically cryptic diversity in Australian desert spring amphipods. Invertebr. Syst. 29, 457 (2015).

    Article  Google Scholar 

  • 36.

    Seidel, R. A., Lang, B. K. & Berg, D. J. Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs. Biol. Conserv. 142, 2303–2313 (2009).

    Article  Google Scholar 

  • 37.

    Sutherland, D. L., Hogg, I. D. & Waas, J. R. Phylogeography and species discrimination in the Paracalliopefluviatilis species complex (Crustacea: Amphipoda): can morphologically similar heterospecifics identify compatible mates?: Mate discrimination in P. fluviatilis. Biol. J. Linn. Soc. 99, 196–205 (2009).

    Article  Google Scholar 

  • 38.

    Witt, J. D. S., Threloff, D. L. & Hebert, P. D. N. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Mol. Ecol. 15, 3073–3082 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Witt, J. D. S. & Hebert, P. D. N. Cryptic species diversity and evolution in the amphipod genus Hyalella within central glaciated North America: a molecular phylogenetic approach. Can. J. Fish Aquat. Sci. 57, 12 (2000).

    Article  Google Scholar 

  • 40.

    Blackman, R. et al. Detection of a new non-native freshwater species by DNA metabarcoding of environmental samples—first record of Gammarus fossarum in the UK. Aquat. Invasions 12, 177–189 (2017).

    Article  Google Scholar 

  • 41.

    Dangles, O., Gessner, M. O., Guerold, F. & Chauvet, E. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J. Appl. Ecol. 41, 365–378 (2004).

    CAS  Article  Google Scholar 

  • 42.

    Felten, V., Tixier, G., Guérold, F., De Crespin De Billy, V. & Dangles, O. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fundam. Appl. Limnol. Arch. Für Hydrobiol. 170, 303–313 (2008).

    Article  Google Scholar 

  • 43.

    Besse, J.-P., Geffard, O. & Coquery, M. Relevance and applicability of active biomonitoring in continental waters under the Water Framework Directive. TrAC Trends Anal. Chem. 36, 113–127 (2012).

    CAS  Article  Google Scholar 

  • 44.

    Schmidlin, L., von Fumetti, S. & Nagel, P. Temperature effects on the feeding and electron transport system (ETS) activity of Gammarus fossarum. Aquat. Ecol. 49, 71–80 (2015).

    Article  Google Scholar 

  • 45.

    Labaude, S., Rigaud, T. & Cézilly, F. Additive effects of temperature and infection with an acanthocephalan parasite on the shredding activity of Gammarus fossarum (Crustacea: Amphipoda): the importance of aggregative behavior. Glob. Change Biol. 23, 1415–1424 (2017).

    ADS  Article  Google Scholar 

  • 46.

    Kunz, P. Y., Kienle, C. & Gerhardt, A. Gammarus spp. in aquatic ecotoxicology and water quality assessment: Toward integrated multilevel tests. In Reviews of Environmental Contamination and Toxicology Vol. 205 (ed. Whitacre, D. M.) 1–76 (Springer, New York, 2010).

    Google Scholar 

  • 47.

    Mehennaoui, K. et al. Gammarus fossarum (Crustacea, Amphipoda) as a model organism to study the effects of silver nanoparticles. Sci. Total Environ. 566–567, 1649–1659 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 48.

    Besse, J.-P. et al. Caged Gammarus fossarum (Crustacea) as a robust tool for the characterization of bioavailable contamination levels in continental waters: towards the determination of threshold values. Water Res. 47, 650–660 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 49.

    Gouveia, D. et al. Ecotoxico-Proteomics for aquatic environmental monitoring: First in situ application of a new proteomics-based multibiomarker assay using caged amphipods. Environ. Sci. Technol. 51, 13417–13426 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Trapp, J. et al. Proteogenomics of Gammarus fossarum to document the reproductive system of amphipods. Mol. Cell. Proteomics 13, 3612–3625 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Sanchez-Thirion, K. et al. High food quality increases infection of Gammarus pulex (Crustacea: Amphipoda) by the acanthocephalan parasite Pomphorhynchus laevis. Int. J. Parasitol. 49, 805–817 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 52.

    Bigot-Clivot, A. et al. Bioaccumulation of toxoplasma and cryptosporidium by the freshwater crustacean Gammarus fossarum: involvement in biomonitoring surveys and trophic transfer. Ecotoxicol. Environ. Saf. 133, 188–194 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 53.

    Chen, H.-Y., Grabner, D. S., Nachev, M., Shih, H.-H. & Sures, B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 3, e1353. https://doi.org/10.7717/peerj.1353 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 54.

    Müller, J. Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol. Phylogenet. Evol. 15, 260–268 (2000).

    PubMed  Article  CAS  Google Scholar 

  • 55.

    Weiss, M., Macher, J. N., Seefeldt, M. A. & Leese, F. Molecular evidence for further overlooked species within the Gammarus fossarum complex (Crustacea: Amphipoda). Hydrobiologia 721, 165–184 (2014).

    CAS  Article  Google Scholar 

  • 56.

    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 57.

    Lagrue, C. et al. Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw. Biol. 59, 2555–2570 (2014).

    Article  Google Scholar 

  • 58.

    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992 (2015).

    PubMed  Article  Google Scholar 

  • 59.

    Copilaş-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229 (2017).

    PubMed  Article  Google Scholar 

  • 60.

    Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 270, S96–S99 (2003).

    CAS  Google Scholar 

  • 61.

    Kekkonen, M. & Hebert, P. D. N. DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Mol. Ecol. Resour. 14, 706–715 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432 (2017).

    Article  Google Scholar 

  • 63.

    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit. Vectors 8, 419 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297 (2019).

    Article  Google Scholar 

  • 65.

    Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372 (2018).

    Article  Google Scholar 

  • 66.

    Hou, Z., Li, J. & Li, S. Diversification of low dispersal crustaceans through mountain uplift: a case study of Gammarus (Amphipoda: Gammaridae) with descriptions of four novel species: Diversification of Gammarus species. Zool. J. Linn. Soc. 170, 591–633 (2014).

    Article  Google Scholar 

  • 67.

    Wellborn, G. A. & Cothran, R. D. Niche diversity in crustacean cryptic species: complementarity in spatial distribution and predation risk. Oecologia 154, 175–183 (2007).

    ADS  PubMed  Article  Google Scholar 

  • 68.

    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).

    Article  Google Scholar 

  • 69.

    McInerney, C. E. et al. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 23, 1153–1166 (2014).

    PubMed  Article  Google Scholar 

  • 70.

    Cooper, S. J. B. et al. Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia: Phylogeography of subterranean amphipods. Mol. Ecol. 16, 1533–1544 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Ethridge, J. Z., Gibson, J. R. & Nice, C. C. Cryptic diversity within and amongst spring-associated Stygobromus amphipods (Amphipoda: Crangonyctidae): Stygobromus amphipod cryptic diversity. Zool. J. Linn. Soc. 167, 227–242 (2013).

    Article  Google Scholar 

  • 72.

    Beermann, J. et al. Cryptic species in a well-known habitat: applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida). Sci. Rep. 8, 6893. https://doi.org/10.1038/s41598-018-25225-x (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    Baird, H. P., Miller, K. J. & Stark, J. S. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods: Genetic diversity in antarticamphipods. Mol. Ecol. 20, 3439–3454 (2011).

    PubMed  Article  Google Scholar 

  • 74.

    Havermans, C. et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8, e74218. https://doi.org/10.1371/journal.pone.0074218 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 75.

    Havermans, C. Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17, 12–25 (2016).

    Article  Google Scholar 

  • 76.

    Coleman, C. O. Taxonomy in times of the taxonomic impediment—examples from the community of experts on amphipod crustaceans. J. Crustac. Biol. 35, 729–740 (2015).

    Article  Google Scholar 

  • 77.

    Arfianti, T., Wilson, S. & Costello, M. J. Progress in the discovery of amphipod crustaceans. PeerJ 6, e5187 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Popov, S. V. et al. Lithological-Paleogeographic maps of Partethys—10 maps late Eocene to Plioccene. Courier Foschung-Intitut Senckberg 1–46 (2004).

  • 79.

    Frenzel, B., Pécsi, M. & Velichko, A. A. Atlas of Paleoclimates and Paleoenvironments of the Northern Hemisphere: Late Pleistocene, Holocene (Geographical Research Institute Hungarian Academy of Science; G. Fischer, Budapest, 1992).

    Google Scholar 

  • 80.

    Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp (Crustacea; Amphipoda): Problems and perspective concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (2007).

    Article  Google Scholar 

  • 81.

    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarusjazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603 (2018).

    Article  Google Scholar 

  • 82.

    Westram, A. M., Jokela, J., Baumgartner, C. & Keller, I. Spatial distribution of cryptic species diversity in European freshwater amphipods (Gammarus fossarum) as revealed by pyrosequencing. PLoS ONE 6, e23879. https://doi.org/10.1371/journal.pone.0023879 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 83.

    Lefébure, T. et al. Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments: cryptic and dynamic evolution in subsurface. Mol. Ecol. 15, 1797–1806 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 84.

    Lefébure, T., Douady, C. J., Malard, F. & Gibert, J. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol. Phylogenet. Evol. 42, 676–686 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 85.

    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis: the ecological effects of intraspecific diversity. Biol. Rev. 94, 648–661 (2019).

    PubMed  Article  Google Scholar 

  • 86.

    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225 (2020).

    Article  CAS  Google Scholar 

  • 87.

    Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525. https://doi.org/10.1371/journal.pone.0095525 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).

    PubMed  Article  Google Scholar 

  • 89.

    Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 90.

    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 91.

    Wysocka, A. et al. Origin of the Lake Ohrid gammarid species flock: ancient local phylogenetic lineage diversification. J. Biogeogr. 41, 1758–1768 (2014).

    Article  Google Scholar 

  • 92.

    Esmaeili-Rineh, S., Sari, A., Delić, T., Moškrič, A. & Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool. J. Linn. Soc. 175, 812–826 (2015).

    Article  Google Scholar 

  • 93.

    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 94.

    AltschuP, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. 8.

  • 95.

    Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde 1–97 (1977).

  • 96.

    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce (Association Française de Limnologie, Thonon-les-Bains, 2012).

    Google Scholar 

  • 97.

    Eggers, T. & Martens, A. A key of the freshwater Amphipods of Germany. Lauterbornia 1–68 (2001).

  • 98.

    Jazdzewski, K. Morfologia, taksonomia i wystepowanie w Polsce kielzy z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). Acta Universitatis Lodziensis 1–187 (1975).

  • 99.

    Karaman, G. S. Crustacea (Amphipoda di acqua dolce. Calderini, Bologna, 1993).

    Google Scholar 

  • 100.

    Hillis, D. M., Moritz, C. & Mable, B. K. Molecular Systematics (Sinauer Associates Inc, Sunderland, 1996).

    Google Scholar 

  • 101.

    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders: Quick and easy dsDNA extraction for barcoding. Mol. Ecol. Resour. 12, 136–141 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 102.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol 6, 294–299 (1994).

    Google Scholar 

  • 103.

    Costa, F. O., Henzler, C. M., Lunt, D. H., Whiteley, N. M. & Rock, J. Probing marine Gammarus (Amphipoda) taxonomy with DNA barcodes. Syst. Biodivers. 7, 365–379 (2009).

    Article  Google Scholar 

  • 104.

    Astrin, J. J. & Stüben, P. E. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera:Curculionidae). Invertebr. Syst. 22, 503–522 (2008).

    Article  Google Scholar 

  • 105.

    Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 106.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  Article  Google Scholar 

  • 107.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 108.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 109.

    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the barcode index number (BIN) System. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 110.

    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 111.

    Puillandre, N. et al. Large-scale species delimitation method for hyperdiverse groups: large-scale species delimitation. Mol. Ecol. 21, 2671–2691 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 112.

    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes7, 355–364 (2007).

  • 113.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 114.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 115.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 116.

    Baele, G., Lemey, P. & Vansteelandt, S. Make the most of your samples: Bayes factor estimators for high-dimensional models of sequence evolution. BMC Bioinform. 14, 85 (2013).

    Article  Google Scholar 

  • 117.

    Brower, A. V. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. 91, 6491–6495 (1994).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 118.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 119.

    Felsenstein, J. Confidence limits on phylogenies: an approach using the boostrap. Evolution 39, 783–791 (1985).

    PubMed  Article  Google Scholar 

  • 120.

    Miller, M. P. Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).

    CAS  PubMed  Article  Google Scholar 


  • Source: Ecology - nature.com

    Comparing the benefits of scooter-sharing vs. bike-sharing

    Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests