in

Contrasting functional structure of saproxylic beetle assemblages associated to different microhabitats

  • 1.

    Siitonen, J. Biodiversity in dead wood (Stokland, J. N., Siitonen, J. & Jonsson, B. G. ed.) 380-393 (New York, 2012).

  • 2.

    Laaksonen, M., Peuhu, E., Várkonyi, G. & Siitonen, J. Effects of habitat quality and landscape structure on saproxylic species dwelling in boreal spruce-swamp forests. Oikos. 117, 1098–1110 (2008).

    • Article
    • Google Scholar
  • 3.

    Jonsson, B. G., Siitonen, J. & Stokland, J. N. Biodiversity in dead wood (Stokland, J. N., Siitonen, J. & Jonsson, B. G. ed.) 402-411 (New York, 2012).

  • 4.

    Williams, D. T., Straw, N., Fielding, N., Jukes, M. & Price, J. The influence of forest management systems on the abundance and diversity of bark beetles (Coleoptera: Curculionidae: Scolytinae) in commercial plantations of Sitka spruce. Forest Ecol. Manag. 398, 196–207 (2017).

    • Article
    • Google Scholar
  • 5.

    Moretti, M. et al. Fire-induced taxonomic and functional changes in saproxylic beetle communities in fire sensitive regions. Ecography 33, 760–771 (2010).

    • Article
    • Google Scholar
  • 6.

    Gibb, H., Johansson, T., Stenbacka, F. & Hjältén, J. Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles. PloS ONE 8, 1–4, https://doi.org/10.1371/journal.pone.0072764 (2013).

  • 7.

    Gossner, M. M. et al. Current ‘near-to-nature’ forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27, 605–614 (2013).

  • 8.

    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17, 154–162 (2013).

    • Article
    • Google Scholar
  • 9.

    Thorn, S. et al. New Insights into the Consequences of Post-Windthrow Salvage Logging Revealed by Functional Structure of Saproxylic Beetles Assemblages. PloS ONE 9(7), e101757 (2014).

  • 10.

    Janssen, P., Fuhr, M., Cateau, E., Nusillard, B. & Bouget, C. Forest continuity acts congruently with stand maturity in structuring the functional composition of saproxylic beetles. Biol. Conserv. 205, 1–10 (2017).

    • Article
    • Google Scholar
  • 11.

    Speight, M. C. D. Saproxylic Invertebrates and Their Conservation. (Strasbourg, 1989).

  • 12.

    Sánchez-Galván, I. R., Marcos-García, M. A., Galante, E., Azeria, E. T. & Micó, E. Unraveling Saproxylic Insect Interactions in Tree Hollows from Iberian Mediterranean Forest. Environ. Entomol 47, 300–308 (2018).

  • 13.

    Quinto, J., Marcos-García, M. A., Brustel, H., Galante, E. & Micó, E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean Woodland. J. Insect Conserv. 17, 765–776 (2013).

    • Article
    • Google Scholar
  • 14.

    Redolfi De Zan, L., Bellotti, F., D’Amato, D. & Carpaneto, G. M. Saproxylic beetles in three relict beech forests of central Italy: Analysis of environmental parameters and implications for forest management. Forest Ecol. Manag. 328, 229–244 (2014).

    • Article
    • Google Scholar
  • 15.

    Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol 5(21), 4757–4765 (2015).

  • 16.

    Ranius, T. & Jansson, N. A comparison of three methods to survey saproxylic beetles in hollow oaks. Biodivers. Conserv 11(10), 1759–1771 (2002).

    • Article
    • Google Scholar
  • 17.

    Sverdrup-Thygeson, A., Skarpaas, O. & Ødegaard, F. Hollow oaks and beetle conservation: the significance of the surroundings. Biodivers. Conserv. 19, 837–852 (2010).

    • Article
    • Google Scholar
  • 18.

    García-López, A., Galante, E. & Micó, E. Saproxylic Beetle Assemblage Selection as Determining Factor of Species Distributional Patterns: Implications for Conservation. J. Insect Sci. 16(1), 45, https://doi.org/10.1093/jisesa/iew030 (2016).

  • 19.

    Gouix, N. & Brustel, H. Emergence trap, a new method to survey Limoniscus violaceus (Coleoptera: Elateridae) from hollow trees. Biodivers. Conserv. 21, 421–436 (2012).

    • Article
    • Google Scholar
  • 20.

    Micó, E. Saproxylic Insects. Diversity, ecology and conservation (Ulyshen, M. D. ed.) 693-728 (Switzerland, 2018).

  • 21.

    Cocciufa, C. et al. Survey of saproxylic beetle assemblages at different forest plots in central Italy. B. Insectol 67, 295–306 (2014).

    • Google Scholar
  • 22.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

  • 23.

    Menezes, S., Baird, D. J. & Soares, A. M. V. M. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. J. Appl. Ecol 47, 711–719 (2010).

    • Article
    • Google Scholar
  • 24.

    Barton, P. S., Gibb, H., Manning, A. D., Lindenmayer, D. B. & Cunningham, S. A. Morphological traits as predictors of diet and microhabitat use in a diverse beetle assemblage. Biol. J. Linn. Soc 102, 301–310 (2011).

    • Article
    • Google Scholar
  • 25.

    Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).

    • Article
    • Google Scholar
  • 26.

    Lopez, B. et al. A new framework for inferring community assembly processes using phylogenetic information, relevant traits and environmental gradients. One Ecosystem 1, e9501 (2016).

    • Article
    • Google Scholar
  • 27.

    Fountain-Jones, N. M. et al. Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol. Entomol. 40, 1–13 (2015).

    • Article
    • Google Scholar
  • 28.

    Moretti, M., de Bello, F., Roberts, S. P. M. & Potts, S. G. Taxonomical vs. Functional responses of bee communities to fire in two contrasting climatic regions. J. Anim. Ecol. 78, 98–108 (2009).

  • 29.

    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. Camb. Philos. Soc 86, 792–812 (2011).

  • 30.

    Podgaiski, L. R. et al. Spider trait assembly patterns and resilience under fire-induced vegetation change in South Brazilian grasslands. PLoS ONE 8, e60207 (2013).

  • 31.

    Götzenberger, L. et al. Ecological assembly rules in plant communities–approaches, patterns and prospects. Biological Reviews 87, 111–127 (2012).

  • 32.

    Winter, S. & Möller, G. C. Microhabitats in lowland beech forests as monitoring tool for nature conservation. Forest Ecol. Manag. 255, 1251–1261 (2008).

    • Article
    • Google Scholar
  • 33.

    Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol 24, 867–876 (2010).

    • Article
    • Google Scholar
  • 34.

    Hooper, D.U. et al. Biodiversity and Ecosystem Functioning. Synthesis and Perspectives (Loreau, M., Naeem, S. & Inchausti, P. eds.) 195-208 (Oxford, 2002).

  • 35.

    MacArthur, R. H. & Levins, R. Limiting similarity convergence and divergence of coexisting species. Amer. Nat. 101, 377–385 (1967).

    • Article
    • Google Scholar
  • 36.

    Hardin, G. The competitive exclusion principle. Science 131(3409), 1292–1297 (1960).

  • 37.

    Quinto, J., Micó, E., Galante, E., Martinez-Falcón, A. & Marcos-García, M. A. Influence of tree hollow characteristics on the diversity of saproxylic insect guilds in Iberian Mediterranean woodlands. J. Insect Conserv. 18, 981–992 (2014).

    • Article
    • Google Scholar
  • 38.

    de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).

  • 39.

    Forsythe, T. G. Locomotion in ground beetles (Coleoptera, Carabidae): an interpretation of leg structure in functional terms. J. Zool 200, 493–507 (1983).

    • Article
    • Google Scholar
  • 40.

    Ribera, I., McCracken, D. I., Foster, G. N., Downie, I. S. & Abernethy, V. J. Morphological diversity of ground beetles (Coleoptera: Carabidae) in Scottish agricultural land. J. Zool. 247, 1–18 (1999).

    • Article
    • Google Scholar
  • 41.

    Johansson, L. C. et al. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles. J. R. Soc 9, 2745–2748 (2012).

    • Article
    • Google Scholar
  • 42.

    Ranius, T. Influence of stand size and quality of tree hollows on saproxylic beetles in Sweden. Biol. Conserv. 103, 85–91 (2002).

    • Article
    • Google Scholar
  • 43.

    Jönsson, N., Méndez, M. & Ranius, T. Nutrient richness of wood mould in tree hollows with the Scarabaeid beetle Osmoderma eremita. Anim. Biodivers. Conserv. 27(2), 79–82 (2004).

    • Google Scholar
  • 44.

    Micó, E., García-López, A., Sánchez, A., Juárez, M. & Galante, E. What can physical, biotic and chemical features of a tree hollow tell us about their associated diversity? J. Insect Conserv. 19, 141–153 (2015).

    • Article
    • Google Scholar
  • 45.

    Pilskog, H. E., Birkemoe, T., Framstad, E. & Sverdrup-Thygeson, A. Effect of habitat size, quality, and isolation on functional groups of beetles in hollow oaks. J. Insect Sci. 16(1), 26, https://doi.org/10.1093/jisesa/iev145 (2016).

  • 46.

    Sebek, P., Altman, J., Platek, M. & Cizek, L. Is active management the key to the conservation of saproxylic biodiversity? Pollarding promotes the formation of tree hollows. PLoS ONE 8, e60456 (2013).

  • 47.

    Ramilo, P. et al. Influence of Traditional Management and Environmental Variables on Mediterranean Saproxylic Beetle Assemblages. Environ. Entomol 46(6), 1235–1242 (2017).

  • 48.

    Jonsen, I. D. & Fahrig, L. Response of generalist and specialist insect herbivores to landscape spatial structure. Landscape Ecol 12, 185–197 (1997).

    • Article
    • Google Scholar
  • 49.

    Downie, I. S. et al. Modelling populations of Erigone atra and E. Dentipalis (Araenae: Linyphiidae) across an agricultura gradient in Scotland. Agr. Ecosyst. Environ. 80, 15–28 (2000).

    • Article
    • Google Scholar
  • 50.

    Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Global Ecol. Biogeogr 21, 873–885 (2012).

    • Article
    • Google Scholar
  • 51.

    Hjältén, J. et al. Micro and macro-habitat associations in saproxylic beetles: implications for biodiversity management. PLoS ONE 7, e41100 (2012).

  • 52.

    Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in dead wood. (New York, 2012).

  • 53.

    Swenson, N. G. et al. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93, 490–499 (2012).

  • 54.

    Schauer, B. et al. Influence of tree hollow characteristics on saproxylic beetle diversity in a managed forest. Biodivers. Conserv. 27(4), 853–869 (2018).

    • Article
    • Google Scholar
  • 55.

    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: Meta-analysis of species richness in Europe. Conserv. Biol 24(1), 101–112 (2010).

  • 56.

    Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci Rep. https://doi.org/10.1038/s41598-018-20823-1 (2018).

  • 57.

    Quinto, J. et al. Breaking down complex saproxylic communities: understanding sub-networks structure and implications to network robustness. PLoS ONE 7(9), e45062 (2012).

  • 58.

    Micó, E., García-López, A., Brustel, H., Padilla, A. & Galante, E. Explaining the saproxylic beetle diversity of a protected Mediterranean area. Biodivers. Conserv. 22, 889–904 (2013).

    • Article
    • Google Scholar
  • 59.

    Ramírez-Hernández, A., Micó, E., Marcos-García, M. A., Brustel, H. & Galante, E. The “dehesa”, a key ecosystem in maintaining the diversity of Mediterranean saproxylic insects (Coleoptera and Diptera: Syrphidae). Biodivers. Conserv. 23, 2069–2086 (2014).

    • Article
    • Google Scholar
  • 60.

    Bouget, C., Brustel, H., Brin, A. & Noblecourt, T. Sampling saproxylic beetles with window flight traps: methodological insights. Rev. Écol. (Terre Vie) 63, 13–24 (2008a).

    • Google Scholar
  • 61.

    Bouchard, P. et al. Family-group names in Coleoptera (Insecta). ZooKeys 88, 1–972 (2011).

    • Article
    • Google Scholar
  • 62.

    Löbl, I. & Smetana, A. Catalogue of Palaearctic Coleoptera. Volume 2. Hydrophiloidea-Histeroidea -Staphylinoidea. (Stenstrup, 2004).

  • 63.

    Löbl, I. & Smetana, A. Catalogue of palaearctic coleoptera. Volume 3. Scarabaeoidea-Scirtoidea-Dascilloidea-Buprestoidea-Byrrhoidea. (Stenstrup, 2006).

  • 64.

    Löbl, I. & Smetana, A. Catalogue of palaearctic coleoptera. Volume 4. Elateroidea Derodontoidea-Bostrichoidea-Lymexyloidea-Cleroidea-Cucujoidea. (Stenstrup, 2007).

  • 65.

    Löbl, I. & Smetana, A. Catalogue of Palaearctic Coleoptera. Volume 5. Tenebrionoidea. (Stenstrup, 2008).

  • 66.

    Löbl, I. & Smetana, A. Catalogue of Palaearctic Coleoptera. Volume 6. Chrysomeloidea. (Stenstrup, 2010).

  • 67.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

  • 68.

    Chao, A. & Shen, T. J. Program SPADE (Species Prediction and Diversity Estimation), http://chao.stat.nthu.edu.tw (2010).

  • 69.

    FountainJones, N. M. et al. Trophic position determines functional and phylogenetic recovery after disturbance within a community. Funct Ecol. 31, 1441–1451, 10.1111/1365-2435.12845 (2017).

    • Article
    • Google Scholar
  • 70.

    Pavoine, S., Marcon, E. & Ricotta, C. ‘Equivalent numbers’ for species, phylogenetic or functional diversity in a nested hierarchy ofmultiple scales. Methods Ecol. Evol 7, 1152–1163 (2016).

    • Article
    • Google Scholar
  • 71.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. PNAS 104, 20684–20689 (2007).

  • 72.

    Carmona, C. P., de Bello, F., Mason, N. W. H. & Leps, J. Traits Without Borders: Integrating Functional Diversity Across Scales. Trends Ecol. Evol 31, 382–394 (2016a).

  • 73.

    Carmona, C. P., de Bello, F., Mason, N. W. H. & Leps, J. The Density Awakens: A Reply to Blonder. Trends Ecol. Evol. 31, 667–669 (2016b).

  • 74.

    Carmona, C.P., de Bello, F., Mason, N.W. & Lepš, J. Trait Probability Density (TPD): measuring functional diversity across scales based on trait probability density with R. Ecology, in press. https://doi.org/10.1002/ecy.2876 (2019).

  • 75.

    Carmona, C. P. TPD: Methods for Measuring Functional Diversity Based on Trait Probability Density. R package version 0.1.2. https://CRAN.R-project.org/package=TPD (2017).

  • 76.

    Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional and functional evenness divergence: the primary of functional components diversity. Oikos 111, 112–118 (2005).

    • Article
    • Google Scholar
  • 77.

    Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–22301 (2008).

  • 78.

    Manly, B. F. J. A note on the analysis of species co-occurrences. Ecology 76, 1109–1115 (1995).

    • Article
    • Google Scholar
  • 79.

    Carmona, C. P., Mason, N. W. H., Azcárate, F. M. & Peco, B. Inter-annual fluctuations in rainfall shift the functional structure of Mediterranean grasslands across gradients of productivity and disturbance. J. Veg. Sci. 26(3), 538–551 (2015).

    • Article
    • Google Scholar
  • 80.

    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide (P Peres-Neto, Ed.). Methods Ecol. Evol. 7, 1386-1395 (2016).

    • Article
    • Google Scholar
  • 81.

    Benjamin, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B 57, 289–300 (1995).

  • 82.

    Traba, J., Morales, M. B., Carmona, C. P. & Delgado, M. P. Resource partitioning and niche segregation in a steppe bird assemblage. Commun. Ecol 16, 178–188 (2015).

    • Article
    • Google Scholar
  • 83.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.R-project.org/package=vegan (2017).

  • 84.

    Carmona, C. P. et al. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall (M Cadotte, Ed.). J. Appl. Ecol. 49, 1084-1093 (2012).

    • Article
    • Google Scholar
  • 85.

    Magura, T., Tóthmérész, B. & Lövei, G. L. Body size inequality of carabids along an urbanisation gradient. Basic Appl. Ecol. 7, 472–482 (2006).

    • Article
    • Google Scholar
  • 86.

    Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1094–1104 (2007).

  • 87.

    Bauer, T. Prey capture and structure of the visual space of an insect that hunts by sight on the litter layer (Notiophilus biguttatus, Carabidae, Coleoptera). Behav. Ecol. Sociobiol. 8, 91–97 (1981).

    • Article
    • Google Scholar
  • 88.

    Woodcock, B. A. et al. Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. Agric. Ecosyst. Environ 139, 181–186 (2010).

    • Article
    • Google Scholar
  • 89.

    Bouget, C., Brustel, H. & Zagatti, P. The French Information System on Saproxylic BEetle Ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev. Écol. (Terre Vie) 10, 33–36 (2008).

    • Google Scholar
  • 90.

    Audisio, P. et al. Lista Rossa IUCN dei Coleotteri saproxilici Italiani. (Roma, 2014).

  • 91.

    Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).

  • 92.

    Davies, K. F., Margules, C. R. & Lawrence, J. F. Which traits of species predict population declines in experimental forest fragments? Ecology 81, 1450–1461 (2000).

    • Article
    • Google Scholar
  • 93.

    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change. 4, 217–221 (2014).


  • Source: Ecology - nature.com

    Powering the planet

    What is the future of lighting waste?