in

Convergent molecular evolution among ash species resistant to the emerald ash borer

  • 1.

    Pautasso, M., Aas, G., Queloz, V. & Holdenrieder, O. European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biol. Conserv. 158, 37–49 (2013).

    • Article
    • Google Scholar
  • 2.

    MacFarlane, D. W. & Meyer, S. P. Characteristics and distribution of potential ash tree hosts for emerald ash borer. For. Ecol. Manage. 213, 15–24 (2005).

    • Article
    • Google Scholar
  • 3.

    Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A. & Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773 (2013).

  • 4.

    Herms, D. A. & McCullough, D. G. Emerald ash borer invasion of North America: history, biology, ecology, impacts, and management. Annu. Rev. Entomol. 59, 13–30 (2014).

  • 5.

    Orlova-Bienkowskaja, M. J. Ashes in Europe are in danger: the invasive range of Agrilus planipennis in European Russia is expanding. Biol. Invasions 16, 1345–1349 (2014).

    • Article
    • Google Scholar
  • 6.

    McCullough, D. G. Challenges, tactics and integrated management of emerald ash borer in North America. Forestry 93, 197–211 (2019).

  • 7.

    Drogvalenko, A. N., Orlova-Bienkowskaja, M. J. & Bieńkowski, A. O. Record of the emerald ash borer (Agrilus planipennis) in Ukraine is confirmed. Insects 10, 338 (2019).

  • 8.

    Semizer-Cuming, D., Krutovsky, K. V., Baranchikov, Y. N., Kjӕr, E. D. & Williams, C. G. Saving the world’s ash forests calls for international cooperation now. Nat. Ecol. Evol. 3, 141–144 (2019).

  • 9.

    Evans, H. F., Williams, D., Hoch, G., Loomans, A. & Marzano, M. Developing a European toolbox to manage potential invasion by emerald ash borer (Agrilus planipennis) and bronze birch borer (Agrilus anxius), important pests of ash and birch. Forestry 93, 187–196 (2020).

  • 10.

    Baranchikov, Y., Mozolevskaya, E., Yurchenko, G. & Kenis, M. Occurrence of the emerald ash borer, Agrilus planipennis in Russia and its potential impact on European forestry. Bull. OEPP 38, 233–238 (2008).

    • Article
    • Google Scholar
  • 11.

    Zhao, T. et al. Induced outbreaks of indigenous insect species by exotic tree species. Acta Entomol. Sin. 50, 826–833 (2007).

    • Google Scholar
  • 12.

    Liu, H. et al. Exploratory survey for the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae), and its natural enemies in China. Great Lakes Entomol. 36, 191–204 (2003).

    • Google Scholar
  • 13.

    Wei, X. et al. Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in China: a review and distribution survey. Acta Entomol. Sin. 47, 679–685 (2004).

    • Google Scholar
  • 14.

    Orlova-Bienkowskaja, M. J. & Volkovitsh, M. G. Are native ranges of the most destructive invasive pests well known? A case study of the native range of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Biol. Invasions 20, 1275–1286 (2018).

    • Article
    • Google Scholar
  • 15.

    Showalter, D. N., Villari, C., Herms, D. A. & Bonello, P. Drought stress increased survival and development of emerald ash borer larvae on coevolved Manchurian ash and implicates phloem-based traits in resistance. Agric. For. Entomol. 20, 170–179 (2018).

    • Article
    • Google Scholar
  • 16.

    Whitehill, J. G. A. et al. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. PLoS ONE 6, e24863 (2011).

  • 17.

    Whitehill, J. G. A. et al. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to Manchurian ash, a species resistant to emerald ash borer. J. Chem. Ecol. 38, 499–511 (2012).

  • 18.

    Lane, T. et al. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genomics 17, 702 (2016).

  • 19.

    Sackton, T. B. et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364, 74–78 (2019).

  • 20.

    Arnold, B. J. et al. Borrowed alleles and convergence in serpentine adaptation. Proc. Natl Acad. Sci. USA 113, 8320–8325 (2016).

  • 21.

    Hu, Y. et al. Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proc. Natl Acad. Sci. USA 114, 1081–1086 (2017).

  • 22.

    Yang, X. et al. The Kalanchoë genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism. Nat. Commun. 8, 1899 (2017).

  • 23.

    Hill, J. et al. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin. Proc. Natl Acad. Sci. USA 116, 18473–18478 (2019).

  • 24.

    Zhen, Y., Aardema, M. L., Medina, E. M., Schumer, M. & Andolfatto, P. Parallel molecular evolution in an herbivore community. Science 337, 1634–1637 (2012).

  • 25.

    Wallander, E. Systematics and floral evolution in Fraxinus (Oleaceae). Belg. Dendrol. Belg. 2012, 39–58 (2012).

    • Google Scholar
  • 26.

    Koch, J. L., Carey, D. W., Mason, M. E., Poland, T. M. & Knight, K. S. Intraspecific variation in Fraxinus pennsylvanica responses to emerald ash borer (Agrilus planipennis). New For. (Dordr.) 46, 995–1011 (2015).

    • Google Scholar
  • 27.

    Sollars, E. S. A. et al. Genome sequence and genetic diversity of European ash trees. Nature 541, 212–216 (2017).

  • 28.

    Cruz, F. et al. Genome sequence of the olive tree, Olea europaea. Gigascience 5, 29 (2016).

  • 29.

    Hellsten, U. et al. Fine-scale variation in meiotic recombination in Mimulus inferred from population shotgun sequencing. Proc. Natl Acad. Sci. USA 110, 19478–19482 (2013).

  • 30.

    Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

  • 31.

    Wright, J. W. New chromosome counts in Acer and Fraxinus. Morris Arb. Bull. 8, 33–34 (1957).

    • Google Scholar
  • 32.

    Bernards, M. A. & Båstrup-Spohr, L. in Induced Plant Resistance to Herbivory (ed. Schaller, A.) 189–211 (Springer, 2008).

  • 33.

    Stahl, E., Hilfiker, O. & Reymond, P. Plant–arthropod interactions: who is the winner? Plant J. 93, 703–728 (2018).

  • 34.

    Abdulrazzak, N. et al. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol. 140, 30–48 (2006).

  • 35.

    Rupasinghe, S., Baudry, J. & Schuler, M. A. Common active site architecture and binding strategy of four phenylpropanoid P450s from Arabidopsis thaliana as revealed by molecular modeling. Protein Eng. 16, 721–731 (2003).

  • 36.

    Dolan, W. L. & Chapple, C. Conservation and divergence of mediator structure and function: insights from plants. Plant Cell Physiol. 58, 4–21 (2017).

  • 37.

    Bonawitz, N. D. et al. Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature 509, 376–380 (2014).

  • 38.

    Dolan, W. L. & Chapple, C. Transcriptome analysis of four Arabidopsis thaliana mediator tail mutants reveals overlapping and unique functions in gene regulation. G3 (Bethesda) 8, 3093–3108 (2018).

  • 39.

    Xu, Z. et al. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol. 55, 343–367 (2004).

  • 40.

    Rigsby, C. M., Herms, D. A., Bonello, P. & Cipollini, D. Higher activities of defense-associated enzymes may contribute to greater resistance of Manchurian ash to emerald ash borer than a closely related and susceptible congener. J. Chem. Ecol. 42, 782–792 (2016).

  • 41.

    Villari, C., Herms, D. A., Whitehill, J. G. A., Cipollini, D. & Bonello, P. Progress and gaps in understanding mechanisms of ash tree resistance to emerald ash borer, a model for wood-boring insects that kill angiosperms. New Phytol. 209, 63–79 (2016).

  • 42.

    Erb, M. & Reymond, P. Molecular interactions between plants and insect herbivores. Annu. Rev. Plant Biol. 70, 527–557 (2019).

  • 43.

    Huang, J., Zhu, C. & Li, X. SCFSNIPER4 controls the turnover of two redundant TRAF proteins in plant immunity. Plant J. 95, 504–515 (2018).

  • 44.

    Hua, Z. & Vierstra, R. D. The cullin-RING ubiquitin-protein ligases. Annu. Rev. Plant Biol. 62, 299–334 (2011).

  • 45.

    Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).

  • 46.

    Berens, M. L., Berry, H. M., Mine, A., Argueso, C. T. & Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 55, 401–425 (2017).

  • 47.

    Lin, S.-H. et al. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20, 2514–2528 (2008).

  • 48.

    Huysmans, M., Lema, A. S., Coll, N. S. & Nowack, M. K. Dying two deaths – programmed cell death regulation in development and disease. Curr. Opin. Plant Biol. 35, 37–44 (2017).

  • 49.

    Bellin, D., Asai, S., Delledonne, M. & Yoshioka, H. Nitric oxide as a mediator for defense responses. Mol. Plant Microbe Interact. 26, 271–277 (2013).

  • 50.

    Zebelo, S. A. & Maffei, M. E. Role of early signalling events in plant–insect interactions. J. Exp. Bot. 66, 435–448 (2015).

  • 51.

    Seifi, H. S. & Shelp, B. J. Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front. Plant Sci. 10, 117 (2019).

  • 52.

    Whitehill, J. G. A., Rigsby, C., Cipollini, D., Herms, D. A. & Bonello, P. Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 176, 1047–1059 (2014).

  • 53.

    Nelson, R., Wiesner-Hanks, T., Wisser, R. & Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 19, 21–33 (2018).

  • 54.

    Radville, L., Chaves, A. & Preisser, E. L. Variation in plant defense against invasive herbivores: evidence for a hypersensitive response in eastern hemlocks (Tsuga canadensis). J. Chem. Ecol. 37, 592–597 (2011).

  • 55.

    Hilker, M. & Fatouros, N. E. Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Curr. Opin. Plant Biol. 32, 9–16 (2016).

  • 56.

    Kim, C. Y., Bove, J. & Assmann, S. M. Overexpression of wound-responsive RNA-binding proteins induces leaf senescence and hypersensitive-like cell death. New Phytol. 180, 57–70 (2008).

  • 57.

    Bollhöner, B. et al. The function of two type II metacaspases in woody tissues of Populus trees. New Phytol. 217, 1551–1565 (2018).

  • 58.

    Altmann, S. et al. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Mol. Ecol. 27, 4901–4915 (2018).

  • 59.

    Rebek, E. J., Herms, D. A. & Smitley, D. R. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.). Environ. Entomol. 37, 242–246 (2008).

  • 60.

    Wei, Z. & Green, P. S. Fraxinus. Flora China 15, 273–279 (1996).

    • Google Scholar
  • 61.

    Davidson, C. G. ‘Northern Treasure’ and ‘Northern Gem’ hybrid ash. HortScience 34, 151–152 (1999).

    • Article
    • Google Scholar
  • 62.

    Koch, J. L. et al. Strategies for selecting and breeding EAB-resistant ash. In Proc. 22nd US Department of Agriculture Interagency Research Symposium on Invasive Species (eds McManus, K. A. & Gottschalk, K. W.) 33–35 (US Department of Agriculture, Forest Service, Northern Research Station, 2011).

  • 63.

    Duan, J. J., Larson, K., Watt, T., Gould, J. & Lelito, J. P. Effects of host plant and larval density on intraspecific competition in larvae of the emerald ash borer (Coleoptera: Buprestidae). Environ. Entomol. 42, 1193–1200 (2013).

  • 64.

    Cappaert, D., McCullough, D. G., Poland, T. M. & Siegert, N. W. Emerald ash borer in North America: a research and regulatory challenge. Am. Entomol. 51, 152–165 (2005).

    • Article
    • Google Scholar
  • 65.

    Chamorro, M. L., Volkovitsh, M. G., Poland, T. M., Haack, R. A. & Lingafelter, S. W. Preimaginal stages of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae): an invasive pest on ash trees (Fraxinus). PLoS ONE 7, e33185 (2012).

  • 66.

    Pellicer, J., Kelly, L. J., Leitch, I. J., Zomlefer, W. B. & Fay, M. F. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 201, 1484–1497 (2014).

  • 67.

    Loureiro, J., Rodriguez, E., Dolezel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann. Bot. 100, 875–888 (2007).

  • 68.

    Doležel, J., Binarová, P. & Lucretti, S. Analysis of nuclear DNA content in plant cells by flow cytometry. Biol. Plant. 31, 113–120 (1989).

    • Article
    • Google Scholar
  • 69.

    Bennett Michael, D. & Smith, J. B. Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. B 334, 309–345 (1991).

    • Article
    • Google Scholar
  • 70.

    Whittemore, A. T. & Xia, Z.-L. Genome size variation in elms (Ulmus spp.) and related genera. HortScience 52, 547–553 (2017).

    • Article
    • Google Scholar
  • 71.

    Doležel, J. et al. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 82, 17–26 (1998).

    • Article
    • Google Scholar
  • 72.

    Greilhuber, J. & Obermayer, R. Genome size and maturity group in Glycine max (soybean). Heredity 78, 547–551 (1997).

    • Article
    • Google Scholar
  • 73.

    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).

    • Google Scholar
  • 74.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    • Article
    • Google Scholar
  • 75.

    Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for fastq files (2011); https://github.com/najoshi/sickle

  • 76.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

  • 77.

    Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

  • 78.

    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012).

  • 79.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).

  • 80.

    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

  • 81.

    Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, e89 (2016).

  • 82.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

  • 83.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

  • 84.

    Altenhoff, A. M., Gil, M., Gonnet, G. H. & Dessimoz, C. Inferring hierarchical orthologous groups from orthologous gene pairs. PLoS ONE 8, e53786 (2013).

  • 85.

    Altenhoff, A. M. et al. The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Res. 43, D240–D249 (2015).

  • 86.

    Goodstein, D. M. et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186 (2012).

  • 87.

    Wallander, E. Systematics of Fraxinus (Oleaceae) and evolution of dioecy. Plant Syst. Evol. 273, 25–49 (2008).

    • Article
    • Google Scholar
  • 88.

    Hinsinger, D. D. et al. The phylogeny and biogeographic history of ashes (Fraxinus, Oleaceae) highlight the roles of migration and vicariance in the diversification of temperate trees. PLoS ONE 8, e80431 (2013).

  • 89.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

  • 90.

    Sela, I., Ashkenazy, H., Katoh, K. & Pupko, T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 43, W7–W14 (2015).

  • 91.

    Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

  • 92.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

  • 93.

    Ané, C., Larget, B., Baum, D. A., Smith, S. D. & Rokas, A. Bayesian estimation of concordance among gene trees. Mol. Biol. Evol. 24, 412–426 (2007).

  • 94.

    Larget, B. R., Kotha, S. K., Dewey, C. N. & Ané, C. BUCKy: gene tree/species tree reconciliation with Bayesian concordance analysis. Bioinformatics 26, 2910–2911 (2010).

  • 95.

    Castoe, T. A. et al. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc. Natl Acad. Sci. USA 106, 8986–8991 (2009).

  • 96.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

  • 97.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

  • 98.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  • 99.

    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  • 100.

    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

  • 101.

    Martin, M. et al. WhatsHap: fast and accurate read-based phasing. Preprint at bioRxiv https://doi.org/10.1101/085050 (2016).

  • 102.

    Milne, I. et al. Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinform. 14, 193–202 (2013).

  • 103.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

  • 104.

    Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).

  • 105.

    Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. W. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23, 1891–1901 (2006).

  • 106.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).

  • 107.

    Liu, Z. et al. Evolutionary interplay between sister cytochrome P450 genes shapes plasticity in plant metabolism. Nat. Commun. 7, 13026 (2016).

  • 108.

    Altenhoff, A. M. et al. The OMA orthology database in 2018: retrieving evolutionary relationships among all domains of life through richer web and programmatic interfaces. Nucleic Acids Res. 46, D477–D485 (2018).

  • 109.

    Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

  • 110.

    Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600–1607 (2006).

  • 111.

    Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology R Package v.2.32.0 (2016).

  • 112.

    R Core Team et al. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).

  • 113.

    Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).

  • 114.

    Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007).

  • 115.

    Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 7, 1511–1522 (2012).

  • 116.

    Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

  • 117.

    Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

  • 118.

    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

  • 119.

    Dallakyan, S. & Olson, A. J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 1263, 243–250 (2015).


  • Source: Ecology - nature.com

    Solar energy farms could offer second life for electric vehicle batteries

    Width identification of transition zone between desert and oasis based on NDVI and TCI