
Sommer F, Backhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11:227–38.
Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.
Al-Asmakh M, Anuar F, Zadjali F, Rafter J, Pettersson S. Gut microbial communities modulating brain development and function. Gut Microbes. 2012;3:366–73.
Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.
Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr Comp Biol. 2002;42:319–26.
Bergman EJ. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.
Justice KE, Smith FA. A model of dietary fiber utilization by small mammalian herbivores, with empirical results for Neotoma. Am Naturalist. 1992;139:398–416.
Stevens CE, Hume ID. Comparative physiology of the vertebrate digestive system. Cambridge University Press; UK, 2004.
Matsuzawa T, Nakata M, Tsushima M. Feeding and excretion in the Afghan pika (Ochotona rufescens rufescens), a new laboratory animal. Lab Anim. 1981;15:319–22.
Liu QS, Wang DH. Effects of diet quality on phenotypic flexibility of organ size and digestive function in Mongolian gerbils (Meriones unguiculatus). J Comp Physiol B. 2007;177:509–18.
Pei YX, Wang DH, Hume ID. Selective digesta retention and coprophagy in Brandt’s vole (Microtus brandti). J Comp Physiol B. 2001;171:457–64.
Savage DC. Gastrointestinal microflora in mammalian nutrition. Annu Rev Nutr. 1986;6:155–78.
Klaasen HLBM, Koopman JP, Scholten PM, Van DBME, Theeuwes AGM. Effect of preventing coprophagy on colonisation by segmented filamentous bacteria in the small bowel of mice. Microb Ecol Health Dis. 1990;3:99–103.
Fitzgerald RJ, Gustafsson BE, McDaniel EG. Effects of coprophagy prevention on intestinal microflora in rats. J Nutr. 1964;84:155–60.
Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn Sci. 2018;22:611–36.
Sandhu KV, Eoin Sherwin HS, Catherine S, Timothy GD, John FC. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.
Ling Z, Cheng Y, Li L. Gut microbiota depletion from early adolescence in mice: Implications for brain and behavior. Brain Behav Immun. 2015;48:165–73.
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17:565–76.
Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.
Wang X, Wang BR, Zhang XJ, Xu Z, Ding YQ, Ju G. Evidences for vagus nerve in maintenance of immune balance and transmission of immune information from gut to brain in STM-infected rats. World J Gastroenterol. 2002;8:540–5.
Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA. 2011;108:16050–5.
Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.
Ziętak M, Kovatcheva-Datchary P, Markiewicz LH, Ståhlman M, Kozak LP, Bäckhed F. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 2016;23:1216–23.
Bo TB, Zhang XY, Wen J, Deng K, Qin XW, Wang DH. The microbiota-gut-brain interaction in regulating host metabolic adaptation to cold in male Brandt’s voles (Lasiopodomys brandtii). ISME J. 2019;13:3037–53.
Laukens D, Brinkman BM, Raes J, De Vos M, Vandenabeele P. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design. FEMS Microbiol Rev. 2016;40:117–32.
Haim A, Izhaki I. The ecological significance of resting metabolic rate and non-shivering thermogenesis for rodents. J Therm Biol. 1993;18:71–81.
Burton T, Killen SS, Armstrong JD, Metcalfe NB. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc R Soc B: Biol Sci. 2011;278:3465–73.
Zhang XY, Sukhchuluun G, Bo TB, Chi QS, Yang JJ, Wang DH, et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome. 2018;6:103.
Montiglio PO, Garant D, Thomas D, Reale D. Individual variation in temporal activity patterns in open-field tests. Anim Behav. 2010;80:905–12.
Yao W, Liu W, Deng K, Wang Z, Wang DH, Zhang XY. GnRH expression and cell proliferation are associated with seasonal breeding and food hoarding in Mongolian gerbils (Meriones unguiculatus). Horm Behav. 2019;112:42–53.
Lieberwirth C, Liu Y, Jia X, Wang Z. Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles. Horm Behav. 2012;62:357–66.
Cardiff RD, Miller CH, Munn RJ. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb Protoc. 2014;6:073411.
Rueden CT, Schindelin JE, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017;18:529.
Chiu K, Lau WM, Lau HT, So KF, Chang RCC. Micro-dissection of rat brain for RNA or protein extraction from specific brain region. J Vis Exp. 2017;7:269.
Jia M, Meng F, Smerin SE, Xing G, Zhang L, Su DM, et al. Biomarkers in an animal model for revealing neural, hematologic, and behavioral correlates of PTSD. J Vis Exp. 2012;68:3361.
Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.
Douglas GM, Maffei VJ, Zaneveld J R, Yurgel SN, Langille MGI. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology. 2020; D1:1-5.
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.
Cartmell J, Salhoff CR, Perry KW, Monn JA, Schoepp DD. Dopamine and 5-HT turnover are increased by the mGlu2/3 receptor agonist LY379268 in rat medial prefrontal cortex, nucleus accumbens and striatum. Brain Res. 2000;887:378–84.
Kim KI, van de Wiel MA. Effects of dependence in high-dimensional multiple testing problems. BMC Bioinform. 2008;9:114.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Huttenhower C, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.
Hörnicke H, Björnhag G. Coprophagy and related strategies for digesta utilization. In: Ruckebusch Y., Thivend P. (eds) Digestive physiology and metabolism in ruminants. Published by MTP Press Limited, England, 1980;34:707–30.
Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Gordon JI, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–23.
Li H, Qu J, Li T, Wirth S, Zhang Y, Li X, et al. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl Microbiol Biotechnol. 2018;102:6739–51.
Sommer F, StHlman M, Ilkayeva O, Arnemo J, Kindberg J, Josefsson J, et al. The Gut Microbiota Modulates Energy Metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 2016;14:1655–61.
Klaasen HL, Koopman JP, Poelma FG, Beynen AC. Intestinal, segmented, filamentous bacteria. FEMS Microbiol Rev. 1992;8:165–79.
Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by Lachnospiraceae: high frequency of Ruminococcus gnavus. Front Pediatr. 2016;4:57.
Præsteng KE, Pope PB, Cann IKO, Mackie RI, Mathiesen SD, Sundset MA, et al. Probiotic dosing of Ruminococcus flavefaciens affects rumen microbiome structure and function in reindeer. Micro Ecol. 2013;66:840–9.
Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Zoetendal EG, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013;7:707–17.
Goodrich J, DiRienzi S, Poole A, Koren O, Walters W, Caporaso J, et al. Conducting a microbiome study. Cell. 2014;158:250–62.
Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Rensen SS, et al. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity. 2013;21:E607–15.
David LA, Maurice C, Carmody RN, Gootenberg DB, Button JE, Fischbach MA, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.
Kohl KD, Miller AW, Marvin JE, Mackie R, Dearing MD. Herbivorous rodents (Neotoma spp.) harbour abundant and active foregut microbiota. Environ Microbiol. 2014;16:2869–78.
Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Turnbaugh PJ, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe. 2015;17:72–84.
Liu QS, Li JY, Wang DH. Ultradian rhythms and the nutritional importance of caecotrophy in captive Brandt’s voles (Lasiopodomys brandtii). J Comp Physiol B. 2007;177:423–32.
Zhang C, Li S, Yang L, Huang P, Li W, Zhao L, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun. 2013;4:2163.
Cree TC, Wadley DM, Marlett JA. Effect of preventing coprophagy in the rat on neutral detergent fiber digestibility and apparent calcium absorption. J Nutr. 1986;116:1204–8.
Sukemori S, Ikeda S, Kurihara Y, Ito S. Amino acid, mineral and vitamin levels in hydrous faeces obtained from coprophagy-prevented rats. J Anim Physiol Anim Nutr. 2003;87:213–20.
Cranford JA, Johnson EO. Effects of coprophagy and diet quality on two microtine rodents (Microtus pennsylvanicus and Microtus pinetorum). J Mammal. 1989;70:494–502.
Stillings BR, Hackler LR. Effect of coprophagy on protein utilization in the rat. J Nutr. 1966;90:19–24.
Dunel-Erb S, Chevalier C, Laurent P, Bach A, Decrock F, Le Maho Y. Restoration of the jejunal mucosa in rats refed after prolonged fasting. Comp Biochem Physiol Part A: Mol Integr Physiol. 2001;129:933–47.
Merry BJ. Molecular mechanisms linking calorie restriction and longevity. Int J Biochem Cell Biol. 2002;34:1340–54.
Sauberlich HJ. Amino acid imbalance as related to methionine, isoleucine, threonine and tryptophan requirement of the rat or mouse. J Nutr. 1956;59:353–70.
Yan L, Sun X, Wang Z, Song M, Zhang Z. Regulation of social behaviors by p-Stat3 via oxytocin and its receptor in the nucleus accumbens of male Brandt’s voles (Lasiopodomys brandtii). Horm Behav. 2020;119:104638.
Janson CH. Experimental evidence for spatial memory in foraging wild capuchin monkeys, Cebus apella. Anim Behav. 1998;55:1229–43.
Phelps SM, Rand AS, Ryan MJ. A cognitive framework for mate choice and species recognition. Am Naturalist. 2006;167:28–42.
Parker JT, Rodriguez N, Lawal B, Delevan CJ, & Bamshad M. Mating increases male’s interest in other females: a cognitive study in socially monogamous prairie voles (microtus ochrogaster). Behav Processes. 2011;88:127–34.
Burkart JM, Van Schaik CP. Cognitive consequences of cooperative breeding in primates?. Anim Cognition. 2010;13:1–19.
Luine V, Hearns M. Spatial memory deficits in aged rats: contributions of the cholinergic system assessed by ChAT. Brain Res. 1990;523:321–4.
Bowman RE, Beck KD, Luine VN. Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Hormones Behav. 2003;43:48–59.
Deng XH, Liu Y, Chen ZG. Memory-based evolutionary game on small-world network with tunable heterogeneity. Phys A: Stat Mech its Appl. 2010;389:5173–81.
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.
Vadder FD, Grasset E, Holm LM, Karsenty G, Macpherson AJ, Bäckhed F, et al. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA. 2018;115:6458–63.
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.
Liebsch G, Wotjak CT, Landgraf R, Engelmann M. Septal vasopressin modulates anxiety-related behavior in rats. Neurosci Lett. 1996;217:101–4.
Cilz NI, Cymerblit-Sabba A, Young WS. Oxytocin and vasopressin in the rodent hippocampus. Genes Brain Behav. 2019;18:e12535.
Johnson ZV, Young LJ. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev. 2017;76:87–98.
Hamburger-Bar, Klein R,A, Belmaker RH. The effect of chronic vs. acute injection of vasopressin on animal learning and memory. Peptides. 1985;6:23–5.
Bluthe RM, Koob GF, Dantzer R. Hypertonic saline mimics the effects of vasopressin and social recognition in rats. Behav Pharm. 1991;2:513–6.
Bohus B, Urban I, Vanwimersmagreidanus T, Dewied D. Opposite effects of oxytocin and vasopressin on avoidance behavior and hippocampal theta rhythm in the rat. Neuropharmacology. 1978;17:239–47.
Metzger D, Alescio-Lautier B, Bosler O, Devigne C, Soumireu-Mourat B. Effect of changes in the intrahippocampal vasopressin on memory retrieval and relearning. Behav Neural Biol. 1993;59:29–48.
Dietrich A, Allen JD. Vasopressin and memory. II. Lesions to the hippocampus block the memory enhancing effects of AVP4-9 in the radial maze. Behav Brain Res. 1997;87:201–8.
Yang C, Zhang X, Gao J, Wang M, Yang Z. Arginine vasopressin ameliorates spatial learning impairments in chronic cerebral hypoperfusion via V1a receptor and autophagy signaling partially. Transl Psychiatry. 2017;7:e1174.
Popik P, Van Ree JM. Long-term facilitation of social recognition in rats by vasopressin related peptides: a structure-activity study. Life Sci. 1992;50:567–72.
Lee SY, Park SH, Chung C, Kim JJ, Choi SY, Han JS. Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Sci Rep. 2015;5:18540.
Burkett JP, Andari E, Johnson ZV, Curry DC, de Waal FBM, Young LJ. Oxytocin-dependent consolation behavior in rodents. Science. 2016;351:375–8.
Gobrogge KL, Jia X, Liu Y, Wang Z. Neurochemical mediation of affiliation and aggression associated with pair-bonding. Biol Psychiatry. 2017;81:231–42.
Freeman AR, Hare JF, Anderson WG, Caldwell HK. Effects of arginine vasopressin on Richardson’s ground squirrel social and vocal behavior. Behav Neurosci. 2018;132:34.
Kohl KD, Carey HV. A place for host–microbe symbiosis in the comparative physiologist’s toolbox. J Exp Biol. 2016;219:3496–504.
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behavior—epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13:69–86.
Luczynski P, Whelan SO, O’Sullivan C, Clarke G, Shanahan F, Dinan TG, et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci. 2016;44:2654–66.
Zambell KL, Fitch MD, Fleming SE. Acetate and butyrate are the major substrates for de novo lipogenesis in rat colonic epithelial cells. J Nutr. 2003;133:3509–15.
Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011;13:517–26.
Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr. 2004;91:915–23.
Harada E, Kato S. Effect of short-chain fatty acids on the secretory response of the ovine exocrine pancreas. Am J Physiol. 1983;244:G284–90.
Kvietys PR, Granger DN. Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology. 1981;80:962–9.
Whittle N, Singewald N. HDAC inhibitors as cognitive enhancers in fear, anxiety and trauma therapy: where do we stand?. Biochemical Soc Trans. 2014;42:569.
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharm Ther. 2015;149:150–90.
Van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, Cryan JF, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018;596:4923–44.
Kaptan Z, Akgün-Dar K, Kapucu A, Dedeakayoğulları H, Batu Ş, Üzüm G. Long term consequences on spatial learning-memory of low-calorie diet during adolescence in female rats; hippocampal and prefrontal cortex BDNF level, expression of NeuN and cell proliferation in dentate gyrus. Brain Res. 2015;1618:194–204.
Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R. Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev. 1996;20:341–58.
Song Z, Larkin TE, Malley MO, Albers HE. Oxytocin (OT) and arginine-vasopressin (AVP) act on OT receptors and not AVP V1a receptors to enhance social recognition in adult Syrian hamsters (Mesocricetus auratus). Hormones Behav. 2016;81:20–27.
Dantzer R, Koob GF, Bluthe RM, Le Moal M. Septal vasopressin modulates social memory in male rats. Brain Res. 1988;457:143–7.
Lukas M, Toth I, Veenema AH, Neumann ID. Oxytocin mediates rodent social memory within the lateral septum and the medial amygdala depending on the relevance of the social stimulus: male juvenile versus female adult conspecifics. Psychoneuroendocrinology. 2013;38:916–26.
Wolf HK, Buslei R, Schmidt-Kastner R, Schmidt-Kastner PK, Pietsch T, Blümcke I, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44:1167–71.
Source: Ecology - nature.com