in

Could Vegetation Index be Derive from Synthetic Aperture Radar? – The Linear Relationship between Interferometric Coherence and NDVI

  • 1.

    Gabriel, A. K., Goldstein, R. M. & Zebker, H. A. Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth 94, 9183–9191 (1989).

    • Article
    • Google Scholar
  • 2.

    Massonnet, D., Briole, P. & Arnaud, A. Deflation of mount etna monitored by spaceborne radar interferometry. Nature 375, 567–570 (1995).

  • 3.

    Massonnet, D. & Feigl, K. L. Radar interferometry and its application to changes in the earth’s surface. Reviews of geophysics 36, 441–500 (1998).

  • 4.

    Ferretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F. & Massonet, D. Insar principles-guidelines for sar interferometry processing and interpretation. The Netherlands: ESA Publications (2007).

  • 5.

    Wegmuller, U., Werner, C., Strozzi, T. & Wiesmann, A. Monitoring mining induced surface deformation. In IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 3, 1933–1935 (IEEE, 2004).

  • 6.

    Jiang, M., Li, Z., Ding, X., Zhu, J. & Feng, G. Modeling minimum and maximum detectable deformation gradients of interferometric sar measurements. International journal of applied earth observation and geoinformation 13, 766–777 (2011).

  • 7.

    Liao, a. W. T., M.S. Time series insar technology and application. Science Press (2014).

  • 8.

    Engelbrecht, J. Parameters affecting interferometric coherence and implications for long-term operational monitoring of mining-induced surface deformation. University of Cape Town (2013).

  • 9.

    Engelbrecht, J. & Inggs, M. R. Coherence optimization and its limitations for deformation monitoring in dynamic agricultural environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 5647–5654 (2016).

  • 10.

    Grey, W. & Luckman, A. Deriving urban topography from multi-baseline sar interferometric phase coherence images. In practice 2, 2 (2001).

    • Google Scholar
  • 11.

    Ahmed, R., Siqueira, P., Hensley, S., Chapman, B. & Bergen, K. A survey of temporal decorrelation from spaceborne l-band repeat-pass insar. Remote Sensing of Environment 115, 2887–2896 (2011).

  • 12.

    Papathanassiou, K. P. & Cloude, S. R. Single-baseline polarimetric sar interferometry. IEEE Transactions on Geoscience and Remote Sensing 39, 2352–2363 (2001).

  • 13.

    Blaes, X. & Defourny, P. Retrieving crop parameters based on tandem ers 1/2 interferometric coherence images. Remote Sensing of Environment 88, 374–385 (2003).

  • 14.

    Olesk, A. et al. Interferometric sar coherence models for characterization of hemiboreal forests using tandem-x data. Remote Sensing 8, 700 (2016).

  • 15.

    Chul Jung, H. & Alsdorf, D. Repeat-pass multi-temporal interferometric sar coherence variations with amazon floodplain and lake habitats. International Journal of Remote Sensing 31, 881–901 (2010).

  • 16.

    Antonova, S. et al. Monitoring bedfast ice and ice phenology in lakes of the lena river delta using terrasar-x backscatter and coherence time series. Remote Sensing 8, 903 (2016).

  • 17.

    Hanssen, R. F. Radar interferometry: data interpretation and error analysis. Dordrech: Kluwer Academic, (2001).

  • 18.

    Andra Baduge, A. W. et al. Seasonal variation of coherence in sar interferograms in kiruna, northern sweden. International Journal of Remote Sensing 37, 370–387 (2016).

  • 19.

    Kuenzer, C. & Knauer, K. Remote sensing of rice crop areas. International Journal of Remote Sensing 34, 2101–2139 (2013).

  • 20.

    Inoue, Y., Sakaiya, E. & Wang, C. Capability of c-band backscattering coefficients from high-resolution satellite sar sensors to assess biophysical variables in paddy rice. Remote Sensing of Environment 140, 257–266 (2014).

  • 21.

    Koskinen, J. T., Palliainen, J., Hyyppa, J. M., Engdahl, M. E. & Hallikainen, M. T. The seasonal behavior of interferometric coherence in boreal forest. IEEE Transactions on Geoscience and Remote Sensing 39, 820–829 (2001).

  • 22.

    Zhang, Z., Wang, C., Zhang, H., Tang, Y. & Liu, X. Analysis of permafrost region coherence variation in the qinghai–tibet plateau with a high-resolution terrasar-x image. Remote Sensing 10, 298 (2018).

  • 23.

    Santoro, M., Askne, J., Smith, G. & Fransson, J. E. Stem volume retrieval in boreal forests from ers-1/2 interferometry. Remote Sensing of Environment 81, 19–35 (2002).

  • 24.

    Torres, R. et al. Gmes sentinel-1 mission. Remote Sensing of Environment 120, 9–24 (2012).

  • 25.

    De Zan, F. & Guarnieri, A. M. Topsar: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing 44, 2352–2360 (2006).

  • 26.

    Prats, P., Scheiber, R., Mittermayer, J., Meta, A. & Moreira, A. Processing of sliding spotlight and tops sar data using baseband azimuth scaling. IEEE Transactions on geoscience and remote sensing 48, 770–780 (2009).

  • 27.

    Yagüe-Martnez, N. et al. Interferometric processing of sentinel-1 tops data. IEEE Transactions on Geoscience and Remote Sensing 54, 2220–2234 (2016).

  • 28.

    Dai, K. et al. Monitoring activity at the daguangbao mega-landslide (china) using sentinel-1 tops time series interferometry. Remote Sensing of Environment 186, 501–513 (2016).

  • 29.

    Carlà, T., Farina, P., Intrieri, E., Ketizmen, H. & Casagli, N. Integration of ground-based radar and satellite insar data for the analysis of an unexpected slope failure in an open-pit mine. Engineering Geology 235, 39–52 (2018).

    • Article
    • Google Scholar
  • 30.

    Roupioz, L., Nerry, F., Jia, L. & Menenti, M. Improved surface reflectance from remote sensing data with sub-pixel topographic information. Remote Sensing 6, 10356–10374 (2014).

  • 31.

    Psomiadis, E., Dercas, N., Dalezios, N. R. & Spyropoulos, N. V. The role of spatial and spectral resolution on the effectiveness of satellite-based vegetation indices. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII, vol. 9998, 99981L (International Society for Optics and Photonics, 2016).

  • 32.

    Bernstein, L. S., Jin, X., Gregor, B. & Adler-Golden, S. M. Quick atmospheric correction code: algorithm description and recent upgrades. Optical engineering 51, 111719 (2012).

  • 33.

    Yang, H., Yang, X., Heskel, M., Sun, S. & Tang, J. Seasonal variations of leaf and canopy properties tracked by ground-based ndvi imagery in a temperate forest. Scientific reports 7, 1–10 (2017).

  • 34.

    Zhu, J., Zhang, Y. & Liu, Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a tibetan alpine meadow. Scientific reports 6, 1–9 (2016).

    • Article
    • Google Scholar
  • 35.

    Wiegand, C. & Richardson, A. Use of spectral vegetation indices to infer leaf area, evapotranspiration and yield: Ii. results. Agronomy Journal 82, 630–636 (1990).

    • Article
    • Google Scholar
  • 36.

    Bert, M. K. Radar interferometry: Persistent scatterers technique. The Netherlands: Springer (2006).

  • 37.

    Santoro, M., Askne, J. I., Wegmuller, U. & Werner, C. L. Observations, modeling, and applications of ers-envisat coherence over land surfaces. IEEE Transactions on Geoscience and Remote Sensing 45, 2600–2611 (2007).

  • 38.

    Wang, T., Liao, M. & Perissin, D. Insar coherence-decomposition analysis. IEEE Geoscience and Remote Sensing Letters 7, 156–160 (2009).

  • 39.

    Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. Surface deformation and coherence measurements of kilauea volcano, hawaii, from sir-c radar interferometry. Journal of Geophysical Research: Planets 101, 23109–23125 (1996).

    • Article
    • Google Scholar
  • 40.

    Lu, Z. & Freymueller, J. T. Synthetic aperture radar interferometry coherence analysis over katmai volcano group, alaska. Journal of Geophysical Research: Solid Earth 103, 29887–29894 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere