in

Coupling feeding activity, growth rates and molecular data shows dietetic needs of Ciona robusta (Ascidiacea, Phlebobranchia) in automatic culture plants

  • 1.

    Brunetti, R. et al. Morphological evidence that the molecularly determined Ciona intestinalis type A and type B are different species: Ciona robusta and Ciona intestinalis. J. Zool. Syst. Evol. Res. 53, 186–193. https://doi.org/10.1111/jzs.12101 (2015).

    Article  Google Scholar 

  • 2.

    Lambert, C. C. Historical introduction, overview, and reproductive biology of the protochordates. Can. J. Zool. 83, 1–7. https://doi.org/10.1139/z04-160 (2005).

    Article  Google Scholar 

  • 3.

    Dybern, B. I. The distribution and salinity tolerance of Ciona intestinalis (L.) F. typica with special reference to the waters around Southern Scandinavia. Ophelia 4, 207–226. https://doi.org/10.1080/00785326.1967.10409621 (1967).

    Article  Google Scholar 

  • 4.

    Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps259145 (2003).

    Article  Google Scholar 

  • 5.

    Lambert, C. C. & Lambert, G. Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130, 675–688. https://doi.org/10.1007/s002270050289 (1998).

    Article  Google Scholar 

  • 6.

    Lundälv, T. & Christie, H. Comparative trends and ecological patterns of rocky subtidal communities in the Swedish and Norwegian Skagerrak area. Hydrobiologia 142, 71–80. https://doi.org/10.1007/BF00026748 (1987).

    Article  Google Scholar 

  • 7.

    Hoshino, Z. & Nishikawa, T. Taxonomic studies of Ciona intestinalis (L.) and its allies. Seto Mar. Biol. Lab. Pubbl. 30, 61–79 (1985).

    Article  Google Scholar 

  • 8.

    Mazzola, A. & Riggio, S. Fouling of Palermo harbour. 2nd contribution. Mem. Biol. Mar. Oceanogr. 6, 41–43 (1977).

    Google Scholar 

  • 9.

    Havenhand, J. N. & Svane, I. Roles of hydrodynamics and larval behaviour in determining spatial aggregation in the tunicate Ciona intestinalis. Mar. Ecol. Progr. Ser. 68, 271–276. https://doi.org/10.3354/meps068271 (1991).

    ADS  Article  Google Scholar 

  • 10.

    Koechlin, N. Settlement of epifauna of Spirographis spallanzani, Sycon ciliatum and Ciona intestinalis in the harbor of Lezardrieux. Cah. Biol. Mar. 18, 325–337 (1977).

    Google Scholar 

  • 11.

    Zupo, V., Buia, M. C., Gambi, M. C., Lorenti, M. & Procaccini, G. Temporal variations in the spatial distribution of shoot density in a Posidonia oceanica meadow and patterns of genetic diversity. Mar. Ecol. 27, 328–338. https://doi.org/10.1111/j.1439-0485.2006.00133.x (2006).

    ADS  Article  Google Scholar 

  • 12.

    Keough, M. J. Patterns of recruitment of sessile invertebrates in two subtidal habitats. J. Exp. Mar. Biol. Ecol. 66, 213–245. https://doi.org/10.1016/0022-0981(83)90162-4 (1983).

    Article  Google Scholar 

  • 13.

    Cayer, D., MacNeil, M. & Bagnall, A. G. Tunicate fouling in Nova Scotia aquaculture: a new development. J. Shellfish Res. 18, 327 (1999).

    Google Scholar 

  • 14.

    de Oliveira Marins, F., da Silva Oliveira, C., Maciel, N. M. V. & Skinner, L. F. Reinclusion of Ciona intestinalis (Ascidiacea: Cionidae) in Brazil—a methodological view. Mar. Biodivers. Rec. https://doi.org/10.1017/S175526720900116X (2009).

    Article  Google Scholar 

  • 15.

    Svane, I. & Lundälv, T. Reproductive patterns and population dynamics of Ascidia mentula O.F. Müller on the Swedish west coast. J. Exp. Mar. Biol. Ecol. 50, 163–182. https://doi.org/10.1016/0022-0981(81)90048-4 (1981).

    Article  Google Scholar 

  • 16.

    Svane, I. & Lundalv, T. Persistence stability in ascidian populations: long-term population dynamics and reproductive pattern of Pyura tessellata (forbes) in gullmarfjorden on the swedish west coast. Sarsia 67, 249–257. https://doi.org/10.1016/0022-0981(81)90048-4 (1982).

    Article  Google Scholar 

  • 17.

    Svane, I. Ascidian reproductive patterns related to long-term population dynamics. Sarsia 68, 249–255. https://doi.org/10.1080/00364827.1982.10421339 (1983).

    Article  Google Scholar 

  • 18.

    Lambert, G. The general ecology and growth of a solitary ascidian, Corella willmeriana. Biol. Bull. 135, 296–307. https://doi.org/10.2307/1539783 (1968).

    Article  PubMed  Google Scholar 

  • 19.

    Goodbody, I. The biology of Ascidia nigra (Savigny). 11. The development and survival of young ascidians. Biol. Bull. 124, 31–44. https://doi.org/10.2307/1539566 (1963).

    Article  Google Scholar 

  • 20.

    Goodbody, I. The Biology of Ascidia nigra (Savigny). I. Survival and mortality in an adult population. Biol. Bull. 122, 40–51. https://doi.org/10.2307/1539320 (1962).

    Article  Google Scholar 

  • 21.

    Sato, A., Satoh, N. & Bishop, J. D. D. Field identification of ‘types’ A and B of the ascidian Ciona intestinalis in a region of sympatry. Mar. Biol. 159, 1611–1619. https://doi.org/10.1007/s00227-012-1898-5 (2012).

    Article  Google Scholar 

  • 22.

    Harada, Y. et al. Mechanism of self-sterility in a hermaphroditic chordate. Science 320, 548–550. https://doi.org/10.1126/science.1152488 (2008).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Sawada, H., Morita, M. & Iwano, M. Self/non-self recognition mechanisms in sexual reproduction: New insight into the self-incompatibility system shared by flowering plants and hermaphroditic animals. Biochem. Biophys. Res. Commun. 450, 1142–1148. https://doi.org/10.1016/j.bbrc.2014.05.099 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 24.

    Dehal, P. et al. The draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 298, 2157–2167. https://doi.org/10.1126/science.1080049 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 25.

    Sasaki, A., Miyamoto, Y., Satou, Y., Satoh, N. & Ogasawara, M. Novel endostyle-specific genes in the ascidian Ciona intestinalis. Zool. Sci. 20, 1025–1030. https://doi.org/10.2108/zsj.20.1025 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 26.

    Joly, J. S. et al. Culture of Ciona intestinalis in closed systems. Dev. Dyn. 236, 1832–1840. https://doi.org/10.1002/dvdy.21124 (2007).

    Article  PubMed  Google Scholar 

  • 27.

    Gallo, A. & Tosti, E. Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis. Mar. Drugs 11, 3554–3568. https://doi.org/10.3390/md11093554 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Corbo, J. C., Di Gregorio, A. & Levine, M. The Ascidian as a model organism in developmental and evolutionary biology. Cell 106, 535–538. https://doi.org/10.1016/s0092-8674(01)00481-0 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Stolfi, A. & Christiaen, L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics 192(1), 55–66. https://doi.org/10.1534/genetics.112.140590 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Dahlberg, C. et al. Refining the Ciona intestinalis model of central nervous system regeneration. PLoS ONE 4(2), e4458. https://doi.org/10.1371/journal.pone.0004458 (2009).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Bollner, T., Beesley, P. W. & Thorndyke, M. C. Distribution of GABA-like immunoreactivity during post-metamorphic development and regeneration of the central nervous system in the ascidian Ciona intestinalis. Cell Tissue Res. 272, 553–561. https://doi.org/10.1007/BF00318562 (1993).

    CAS  Article  Google Scholar 

  • 32.

    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656. https://doi.org/10.1073/pnas.202320599 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 33.

    Carver, C. E., Mallet, A. L. & Vercaemer, B. Biological synopsis of the solitary tunicate Ciona intestinalis. Can. Man. Rep. Fish. Aquat. Sci. 2746 (2006).

  • 34.

    Fiala-Médioni, A. Filter-feeding ethology of benthic invertebrates (ascidians). IV. Pumping rate, filtration rate, filtration efficiency. Mar. Biol. 48, 243–249. https://doi.org/10.1007/BF00397151 (1978).

    Article  Google Scholar 

  • 35.

    Hoxha, T. et al. Comparative feeding rates of native and invasive ascidians. Mar. Pollut. Bull. 135, 1067–1071. https://doi.org/10.1016/j.marpolbul.2018.08.039 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    Petersen, J. K., Mayer, S. & Knudsen, M. Å. Beat frequency of cilia in the branchial basket of the ascidian Ciona intestinalis in relation to temperature and algal cell concentration. Mar. Biol. 133, 185–192. https://doi.org/10.1007/s002270050457 (1999).

    Article  Google Scholar 

  • 37.

    Millar, R. H. The biology of ascidians. Adv. Mar. Biol. 9, 1–100 (1971).

    ADS  Article  Google Scholar 

  • 38.

    Thomas, N. W. Mucus-secreting cells from the alimentary canal of Ciona intestinalis. J. Mar. Biol. Assoc. U. K. 50, 429–438. https://doi.org/10.1017/S0025315400004628 (1970).

    Article  Google Scholar 

  • 39.

    Flood, P. R. & Fiala-Medioni, A. Ultrastructure and histochemistry of the food trapping mucous film in benthic filter-feeders (Ascidians). Acta Zool. 62, 53–65. https://doi.org/10.1111/j.1463-6395.1981.tb00616.x (1981).

    Article  Google Scholar 

  • 40.

    Randløv, A. & Riisgard, H. U. Efficiency of particle retention and filtration rate in four species of ascidians. Mar. Ecol. Progr. Ser. 11, 89–103 (1979).

    Google Scholar 

  • 41.

    Petersen, J. K. & Riisgard, H. U. Filtration capacity of the ascidian Ciona intestinalis and its grazing impact in a shallow fjord. Mar. Ecol. Prog. Ser. 88, 9–17 (1992).

    ADS  Article  Google Scholar 

  • 42.

    Lumare, F., Di Muro, P., Tenderini, L. & Zupo, V. Experimental intensive culture of Penaeus monodon in the cold-temperate climate of the North-East coast of Italy (a fishery ‘valle’ of the River Po Delta). Aquaculture 113, 231–241. https://doi.org/10.1016/0044-8486(93)90476-F (1993).

    Article  Google Scholar 

  • 43.

    Mutalipassi, M., Di Natale, M., Mazzella, V. & Zupo, V. Automated culture of aquatic model organisms: shrimp larvae husbandry for the needs of research and aquaculture. Animal 12, 155–163. https://doi.org/10.1017/S1751731117000908 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 44.

    Armsworthy, S. L., MacDonald, B. A. & Ward, J. E. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolidobranchia: Ascidiacea): responses to variations in diet quantity and quality. J. Exp. Mar. Biol. Ecol. 260, 41–69. https://doi.org/10.1016/S0022-0981(01)00238-6 (2001).

    Article  PubMed  Google Scholar 

  • 45.

    Coughlan, J. The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2, 356–358. https://doi.org/10.1007/BF00355716 (1969).

    Article  Google Scholar 

  • 46.

    Pascoe, P. L., Parry, H. E. & Hawkins, A. J. S. Dynamic filter-feeding responses in fouling organisms. Aquat. Biol. 1, 177–185. https://doi.org/10.3354/ab00022 (2007).

    CAS  Article  Google Scholar 

  • 47.

    Petersen, J. K. Ascidian suspension feeding. J. Exp. Mar. Biol. Ecol. 342, 127–137. https://doi.org/10.1016/j.jembe.2006.10.023 (2007).

    Article  Google Scholar 

  • 48.

    Robbins, I. J. The effects of body size, temperature, and suspension density on the filtration and ingestion of inorganic particulate suspensions by ascidians. J. Exp. Mar. Biol. Ecol. 70, 65–78. https://doi.org/10.1016/0022-0981(83)90149-1 (1983).

    Article  Google Scholar 

  • 49.

    Varrella, S. et al. Toxic diatom aldehydes affect defence gene networks in sea urchins. PLoS ONE 11, e0149734. https://doi.org/10.1371/journal.pone.0149734 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    Varrella, S. et al. First morphological and molecular evidence of the negative impact of diatom-derived hydroxyacids on the sea urchin Paracentrotus lividus. Toxicol. Sci. 151, 419–433. https://doi.org/10.1093/toxsci/kfw053 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 51.

    Jacobi, Y., Yahel, G. & Shenkar, N. Efficient filtration of micron and submicron particles by ascidians from oligotrophic waters. Limnol. Oceanogr. 63, S267–S279. https://doi.org/10.1002/lno.10736 (2018).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Robbins, I. J. The regulation of ingestion rate, at high suspended particulate concentrations, by some phleobranchiate ascidians. J. Exp. Mar. Biol. Ecol. 82, 1–10. https://doi.org/10.1016/0022-0981(84)90135-7 (1984).

    Article  Google Scholar 

  • 53.

    Ogasawara, M. et al. Gene expression profiles in young adult Ciona intestinalis. Dev. Genes Evol. 212, 173–185. https://doi.org/10.1007/s00427-002-0230-7 (2002).

    Article  PubMed  Google Scholar 

  • 54.

    Hendrickson, C. et al. Culture of adult ascidians and ascidian genetics. Methods Cell Biol. 143–170, 2004. https://doi.org/10.1016/S0091-679X(04)74007-8 (2004).

    Article  Google Scholar 

  • 55.

    Petersen, S. Feeding response to fish feed diets in Ciona intestinalis: implications for IMTA. IMTA. MSc thesis. University of Bergen (2016).

  • 56.

    Knuckey, R. M., Brown, M. R., Robert, R. & Frampton, D. M. F. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng. 35, 300–313. https://doi.org/10.1016/j.aquaeng.2006.04.001 (2006).

    Article  Google Scholar 

  • 57.

    Raniello, R., Iannicelli, M. M., Nappo, M., Avila, C. & Zupo, V. Production of Cocconeis neothumensis (Bacillariophyceae) biomass in batch cultures and bioreactors for biotechnological applications: light and nutrient requirements. J. Appl. Phycol. 19, 383–391. https://doi.org/10.1007/s10811-006-9145-4 (2007).

    CAS  Article  Google Scholar 

  • 58.

    Nappo, M. et al. Metabolite profiling of the benthic diatom Cocconeis scutellum by GC-MS. J. Appl. Phycol. 21, 295–306. https://doi.org/10.1007/s10811-008-9367-8 (2009).

    CAS  Article  Google Scholar 

  • 59.

    Ruocco, N. et al. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. Aquat. Toxicol. 176, 128–140 (2016).

    CAS  Article  Google Scholar 

  • 60.

    Ruocco, N., Costantini, M. & Santella, L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci. Rep. 6, 1–12. https://doi.org/10.1038/srep32157 (2016).

    CAS  Article  Google Scholar 

  • 61.

    Sigsgaard, S. J., Petersen, J. K. & Iversen, J. J. L. Relationship between specific dynamic action and food quality in the solitary ascidian Ciona intestinalis. Mar. Biol. 143, 1143–1149. https://doi.org/10.1007/s00227-003-1164-y (2003).

    Article  Google Scholar 

  • 62.

    Liu, L. et al. Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation. J. Zhejiang Univ. Sci. B 7, 467–474. https://doi.org/10.1631/jzus.2006.B0467 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18102112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 65.

    Ruocco, N. et al. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos. PLoS ONE 12, e0172171. https://doi.org/10.1371/journal.pone.0172171 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Fujikawa, T., Munakata, T., Kondo, S. I., Satoh, N. & Wada, S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 15, 193–204. https://doi.org/10.1007/s12192-009-0133-x (2010).

    CAS  Article  PubMed  Google Scholar 

  • 67.

    Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445. https://doi.org/10.1093/nar/29.9.e45 (2001).

    Article  Google Scholar 

  • 68.

    Pfaffl, M. W. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, 36e–336. https://doi.org/10.1093/nar/30.9.e36 (2002).

    Article  Google Scholar 

  • 69.

    Ginzburg, L. R. The theory of population dynamics: I. Back to first principles. J. Theor. Biol. 122, 385–399. https://doi.org/10.1016/S0022-5193(86)80180-1 (1986).

    MathSciNet  Article  Google Scholar 

  • 70.

    Turchin, P. Does population ecology have general laws?. Oikos 94, 17–26. https://doi.org/10.1034/j.1600-0706.2001.11310.x (2001).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Disturbance history can increase functional stability in the face of both repeated disturbances of the same type and novel disturbances

    The behaviour of sea snakes (Emydocephalus annulatus) shifts with the tides