in

Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems

  • 1.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Ma, J. & Li, H. Preliminary discussion on eutrophication status of lakes, reservoirs and reivers in China and overseas. Resour. Environ. Yangtze Val. 11, 575–578 (2002).

    CAS  Google Scholar 

  • 3.

    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Paerl, H. W. Transfer of N2 and CO2 fixation products from Anabaena oscillarioides to associated bacteria during inorganic carbon sufficiency and deficiency. J. Phycol. 20, 600–608 (1984).

    CAS  Article  Google Scholar 

  • 5.

    Danillo, O. A., Marli, F. F. & Alessandro, M. V. A metagenomic approach to cyanobacterial genomics. Front. Microbiol. 8, 809–824 (2017).

    Article  Google Scholar 

  • 6.

    Schindler, W. D. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184, 897–899 (1974).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Zhou, J. et al. Phycosphere microbial succession patterns and assembly mechanisms in a marine Dinoflagellate bloom. Appl. Environ. Microbiol. 85, e00349–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Codd, G. A., Lindsay, J., Young, F. M., Morrison, L. F. & Metcalf, J. S. Harmful cyanobacteria. In: Harmful Cyanobacteria. Aquatic Ecology Series (eds Huisman J., Matthijs H. C. & Visser P. M.). Vol. 3, 1–23 (Springer Netherlands: Dordrecht, The Netherlands,2005).

  • 9.

    Christoffersen, K. & Kaas, H. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring, and management. Limnol. Oceanogr. 45, 1212–1212 (2000).

    Article  Google Scholar 

  • 10.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 11.

    Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Laxminarayan, R. et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 13, 1057–1098 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    El-Tahawy, A. T. A. The crisis of antibiotic-resistance in bacteria. Saudi. Med. J. 25, 837–842 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Tripathi, V. & Tripathi, P. in Perspectives in Environmental Toxicology. Environmental Science and Engineering. (ed. Kesari, K.) 183–201 (Springer, Cham: Cham, Switzerland, 2017).

  • 15.

    Gorokhova, E. et al. Bacteria-mediated effects of antibiotics on Daphnia nutrition. Environ. Sci. Technol. 49, 5779–5787 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 9, 233–243 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Garcia-Armisen, T. et al. Antimicrobial resistance of heterotrophic bacteria in sewage-contaminated rivers. Water Res. 45, 788–796 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Czekalski, N., Sigdel, R., Birtel, J., Matthews, B. & Bürgmann, H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ. Int. 81, 45–55 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Bondarczuk, K., Markowicz, A. & Piotrowska-Seget, Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ. Int. 87, 49–55 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Holger, H. & Kornelia, S. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ. Microbiol. 9, 657–666 (2010).

    Google Scholar 

  • 21.

    Baquero, F., Martinez, J. L. & Canton, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Xi, C. et al. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl. Environ. Microbiol. 75, 5714–5718 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Witte, W. Ecological impact of antibiotic use in animals on different complex microflora: environment. Int. J. Antimicrob. Agents 14, 321–325 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Feng, J. L. et al. Identification and characterization of integron-associated antibiotic resistant Laribacter hongkongensis isolated from aquatic products in China. Int. J. Food Microbiol. 144, 337–341 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Luo, Y. et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ. Sci. Technol. 44, 7220–7225 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 26.

    Guo, Y. et al. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom. Environ. Int. 117, 107–115 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Song, H. et al. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa. ISME J. 11, 1865–1876 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Zhang, Z. et al. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J. Environ. Sci. 99, 1–9 (2021).

    Article  Google Scholar 

  • 29.

    Zhang, Q. et al. The fungicide azoxystrobin perturbs the gut microbiota community and enriches antibiotic resistance genes in Enchytraeus crypticus. Environ. Int. 131, 104965 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Zhu, D. et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environ. Sci. Technol. 52, 3081–3090 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Zhu, D. et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut. Environ. Sci. Technol. 52, 12748–12756 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Chen, Q. L. et al. Application of struvite alters the antibiotic resistome in soil, rhizosphere, and phyllosphere. Environ. Sci. Technol. 51, 8149–8157 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Shi, K. et al. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: Responses to nutrient enrichment and meteorological factors. Sci. Rep. 7, 40326 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Zhang, M. et al. Feedback regulation between aquatic microorganisms and the bloom-forming cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 85, e01362–19 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Scheibner, M. V. et al. Impact of warming on phyto-bacterioplankton coupling and bacterial community composition in experimental mesocosms. Environ. Microbiol. 16, 718–733 (2014).

    Article  Google Scholar 

  • 36.

    Woodhouse, J. N. et al. Microbial communities reflect temporal changes in cyanobacterial composition in a shallow ephemeral freshwater lake. ISME J. 10, 1337–1351 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Martin, U. et al. PHI-base: a new interface and further additions for the multi-species pathogen–host interactions database. Nucleic Acids Res. 45, 604–610 (2016).

    Google Scholar 

  • 38.

    Chen, H., Jing, L., Yao, Z., Meng, F. & Teng, Y. Prevalence, source and risk of antibiotic resistance genes in the sediments of Lake Tai (China) deciphered by metagenomic assembly: a comparison with other global lakes. Environ. Int. 127, 267–275 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Zhang, Y., Sua, Y., Liu, Z., Yua, J. & Jina, M. Lipid biomarker evidence for determining the origin and distribution of organic matter in surface sediments of Lake Taihu, Eastern China. Ecol. Indic. 77, 397–408 (2017).

    CAS  Article  Google Scholar 

  • 40.

    Jothikumar, N., Kahler, A., Strockbine, N., Gladney, L. & Hill, V. R. Draft genome sequence of Buttiauxella agrestis, isolated from surface water. Genome Announc. 2, e01060–14 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Igbinosa, H. I. Antibiogram profiling and pathogenic status of Aeromonas species recovered from chicken. Saudi J. Biol. Sci. 21, 481–485 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Nguyen, H. N. K. et al. Molecular characterization of antibiotic resistance in Pseudomonas and Aeromonas isolates from catfish of the Mekong Delta, Vietnam. Vet. Microbiol. 171, 397–405 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 43.

    Gaze, W. H. et al. Impacts of anthropogenic activity on the ecology of class 1 integrons and integron-associated genes in the environment. ISME J. 5, 1253–1261 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Partridge, S. R., Tsafnat, G., Coiera, E. & Iredell, J. R. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol. Rev. 33, 757–784 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 46.

    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Louati, I. et al. Correction: structural diversity of bacterial communities associated with bloom-forming freshwater cyanobacteria differs according to the cyanobacterial genus. PLoS ONE 10, e0140614 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Dias, E. et al. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. Front. Microbiol. 6, 799 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Dias, E., Oliveira, M., Manageiro, V., Vasconcelos, V. & Caniça, M. Deciphering the role of cyanobacteria in water resistome: Hypothesis justifying the antibiotic resistance (phenotype and genotype) in Planktothrix genus. Sci. Total. Environ. 652, 447–454 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Vaz-Moreira, I., Nunes, O. C. & Manaia, C. M. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol. Rev. 38, 761–778 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Cox, G. & Wright, G. D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 303, 287–292 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Myklestad, S. M. in Marine Chemistry. The Handbook of Environmental Chemistry. (eds Wangersky, P. J.) Vol. 5 Series: Water Pollution, vol 5D. 111–148 (Springer: Berlin, Heidelberg, Germany, 2000).

  • 53.

    Pancrace, C. et al. Rearranged biosynthetic gene cluster and synthesis of Hassallidin E in Planktothrix serta PCC 8927. ACS Chem. Biol. 12, 1796–1804 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Zhao, Y. et al. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Sci. Total. Environ. 621, 1224–1232 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Peng, S., Feng, Y., Wang, Y., Guo, X. & Lin, X. Prevalence of antibiotic resistance genes in soils after continually applied with different animal manure for 30 years. J. Hazard. Mater. 340, 16–25 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Szekeres, E. et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ. Pollut. 225, 304–315 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Zhu, L. et al. Bacterial Communities associated with four cyanobacterial genera display structural and functional differences: evidence from an experimental approach. Front. Microbiol. 7, 1662 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 60.

    Sun, D. L., Jiang, X., Wu, Q. L. & Zhou, N. Y. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microbiol. 79, 5962 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99, 5697–5707 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Qian, H. F. et al. Bio-safety assessment of validamycin formulation on bacterial and fungal biomass in soil monitored by real-time PCR. B. Environ. Contam. Tox. 78, 239–244 (2007).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan

    Gene expression in diapausing rotifer eggs in response to divergent environmental predictability regimes