in

Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation

  • 1.

    Anderson, N. J., Renberg, I. & Segerstrom, U. Diatom production responses to the development of early agriculture in a boreal forest lake-catchment (Kassjon, Northern Sweden). J. Ecol. 83, 809–822 (1995).

    • Article
    • Google Scholar
  • 2.

    Davidson, T. A. et al. The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676, 299–315 (2011).

    • Article
    • Google Scholar
  • 3.

    Battarbee, R. W., Anderson, N. J., Jeppesen, E. & Leavitt, P. R. Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshw. Biol. 50, 1772–1780 (2005).

  • 4.

    Ryves, D. B., Battarbee, R. W., Juggins, S., Fritz, S. C. & Anderson, N. J. Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol. Oceanogr. 51, 1355–1368 (2006).

  • 5.

    Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).

  • 6.

    Ribeiro, S. et al. Phytoplankton growth after a century of dormancy illuminates past resilience to catastrophic darkness. Nat. Commun. 2, https://doi.org/10.1038/ncomms1314 (2011).

  • 7.

    Bennington, C. C., McGraw, J. B. & Vavrek, M. C. Ecological genetic-variation in seed banks: 2. Phenotypic and genetic-differences between young and old subpopulations of luzula-parviflora. J. Ecol. 79, 627–643 (1991).

    • Article
    • Google Scholar
  • 8.

    Morris, A. B., Baucom, R. S. & Cruzan, M. B. Stratified analysis of the soil seed bank in the cedar glade endemic Astragalus bibullatus: evidence for historical changes in genetic structure. Am. J. Bot. 89, 29–36 (2002).

  • 9.

    Balint, M. et al. Environmental DNA time series in ecology. Trends Ecol. Evol. 33, 945–957 (2018).

  • 10.

    Hargreaves, K. R., Anderson, N. J. & Clokie, M. R. J. Recovery of viable cyanophages from the sediments of a eutrophic lake at decadal timescales. Fems Microbiol. Ecol. 83, 450–456 (2013).

  • 11.

    Frisch, D. et al. Paleogenetic records of Daphnia pulicaria in two North American lakes reveal the impact of cultural eutrophication. Glob. Change Biol. 23, 708–718 (2017).

    • Article
    • Google Scholar
  • 12.

    Ellegaard, M. & Ribeiro, S. The long-term persistence of phytoplankton resting stages in aquatic ‘seed banks’. Biol. Rev. 93, 166–183 (2018).

  • 13.

    Orsini, L. et al. The evolutionary time machine: using dormant propagules to forecast how populations can adapt to changing environments. Trends Ecol. Evol. 28, 274–282 (2013).

  • 14.

    Roy Chowdhury, P. et al. Differential transcriptomic responses of ancient and modern Daphnia genotypes to phosphorus supply. Mol. Ecol. 24, 123–135 (2015).

  • 15.

    Clokie, M. R. J., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).

  • 16.

    Cai, L. L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).

  • 17.

    Gramain, A., Diaz, G. C., Demergasso, C., Lowenstein, T. K. & McGenity, T. J. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ. Microbiol. 13, 2105–2121 (2011).

  • 18.

    Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jorgensen, B. B. & Spivack, A. J. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484, 101–104 (2012).

  • 19.

    Inagaki, F. et al. Exploring deep microbial life in coal-bearing sediment down to similar to 2.5 km below the ocean floor. Science 349, 420–424 (2015).

  • 20.

    Nilsson, M. & Renberg, I. Viable endospores of thermoactinomyces-vulgaris in lake-sediments as indicators of agricultural history. Appl. Environ. Microbiol. 56, 2025–2028 (1990).

  • 21.

    Livingstone, D. & Jaworski, G. H. M. The viability of akinetes of blue-green-algae recovered from the sediments of Rostherne Mere. Br. Phycol. J. 15, 357–364 (1980).

    • Article
    • Google Scholar
  • 22.

    Legrand, B., Miras, Y., Beauger, A., Dussauze, M. & Latour, D. Akinetes and ancient DNA reveal toxic cyanobacterial recurrences and their potential for resurrection in a 6700-year-old core from a eutrophic lake. Sci. Total Environ. 687, 1369–1380 (2019).

  • 23.

    Wunderlin, T., Junier, T., Roussel-Delif, L., Jeanneret, N. & Junier, P. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environ. Microbiol. Rep. 6, 631–639 (2014).

  • 24.

    Smirnov, A. V. Vertical distribution and abundance of gymnamoebae (Rhizopoda) in bottom sediments of the Brackish water Niva Bay (Baltic Sea, The Sound). Protist 153, 239–250 (2002).

  • 25.

    Shatilovich, A., Stoupin, D. & Rivkina, E. Ciliates from ancient permafrost: assessment of cold resistance of the resting cysts. Eur. J. Protistol. 51, 230–240 (2015).

  • 26.

    Kremp, A., Hinners, J., Klais, R., Leppanen, A. P. & Kallio, A. Patterns of vertical cyst distribution and survival in 100-year-old sediment archives of three spring dinoflagellate species from the Northern Baltic Sea. Eur. J. Phycol. 53, 135–145 (2018).

    • Article
    • Google Scholar
  • 27.

    Ribeiro, S., Berge, T., Lundholm, N. & Ellegaard, M. Hundred Years of Environmental Change and Phytoplankton Ecophysiological Variability Archived in Coastal Sediments. Plos ONE 8, https://doi.org/10.1371/journal.pone.0061184 (2013).

  • 28.

    Lundholm, N., Ribeiro, S., Godhe, A., Nielsen, L. R. & Ellegaard, M. Exploring the impact of multidecadal environmental changes on the population genetic structure of a marine primary producer. Ecol. Evol. 7, 3132–3142 (2017).

  • 29.

    Harnstrom, K., Ellegaard, M., Andersen, T. J. & Godhe, A. Hundred years of genetic structure in a sediment revived diatom population. Proc. Natl Acad. Sci. USA 108, 4252–4257 (2011).

  • 30.

    Duffy, M. A., Perry, L. J., Kearns, C. M., Weider, L. J. & Hairston, N. G. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. Limnol. Oceanogr. 45, 1409–1414 (2000).

    • Article
    • Google Scholar
  • 31.

    Mergeay, J., Verschuren, D. & De Meester, L. Invasion of an asexual American water flea clone throughout Africa and rapid displacement of a native sibling species. Proc. R. Soc. B: Biol. Sci. 273, 2839–2844 (2006).

    • Article
    • Google Scholar
  • 32.

    Brede, N. et al. The impact of human-made ecological changes on the genetic architecture of Daphnia species. Proc. Natl Acad. Sci. USA 106, 4758–4763 (2009).

  • 33.

    Limburg, P. A. & Weider, L. J. ‘Ancient’ DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proc. R. Soc. B: Biol. Sci. 269, 281–287 (2002).

  • 34.

    Radzikowski, J. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res. 35, 707–723 (2013).

    • Article
    • Google Scholar
  • 35.

    Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).

    • Article
    • Google Scholar
  • 36.

    Makino, W., Ohtsuki, H. & Urabe, J. Finding copepod footprints: a protocol for molecular identification of diapausing eggs in lake sediments. Limnology 14, 269–282 (2013).

    • Article
    • Google Scholar
  • 37.

    Lenormand, T. et al. Resurrection ecology in Artemia. Evolut. Appl. 11, 76–87 (2018).

    • Article
    • Google Scholar
  • 38.

    Hairston, N. G. et al. Lake ecosystems—rapid evolution revealed by dormant eggs. Nature 401, 446–446 (1999).

    • Article
    • Google Scholar
  • 39.

    Cousyn, C. et al. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc. Natl Acad. Sci. USA 98, 6256–6260 (2001).

  • 40.

    Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19, 180–190 (2016).

  • 41.

    Lack, J. B., Weider, L. J. & Jeyasingh, P. D. Whole genome amplification and sequencing of a Daphnia resting egg. Mol. Ecol. Resour. 18, 118–127 (2018).

  • 42.

    Schaerlaekens, D. G., Dekker, W., Wickstrom, H., Volckaert, F. A. M. & Maes, G. E. Extracting a century of preserved molecular and population demographic data from archived otoliths in the endangered European eel (Anguilla anguilla L.). J. Exp. Mar. Biol. Ecol. 398, 56–62 (2011).

    • Article
    • Google Scholar
  • 43.

    Iwamoto, E. M., Myers, J. M. & Gustafson, R. G. Resurrecting an extinct salmon evolutionarily significant unit: archived scales, historical DNA and implications for restoration. Mol. Ecol. 21, 1567–1582 (2012).

  • 44.

    De Meester, L., Louette, G., Duvivier, C., Van Darnme, C. & Michels, E. Genetic composition of resident populations influences establishment success of immigrant species. Oecologia 153, 431–440 (2007).

  • 45.

    Roulin, A. C. et al. High genetic variation in resting-stage production in a metapopulation: is there evidence for local adaptation? Evolution 69, 2747–2756 (2015).

  • 46.

    Weis, A. E. Detecting the “invisible fraction” bias in resurrection experiments. Evolut. Appl. 11, 88–95 (2018).

    • Article
    • Google Scholar
  • 47.

    Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–U816 (2007).

  • 48.

    Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. Fems Microbiol. Rev. 37, 407–427 (2013).

  • 49.

    Bolch, C. J. S., Bejoy, T. A. & Green, D. H. Bacterial associates modify growth dynamics of the Dinoflagellate Gymnodinium catenatum. Frontiers Microbiol. 8, https://doi.org/10.3389/fmicb.2017.00670 (2017).

  • 50.

    Flynn, J. M., Chain, F. J. J., Schoen, D. J. & Cristescu, M. E. Spontaneous mutation accumulation in Daphnia pulex in selection-free vs. competitive environments. Mol. Biol. Evol. 34, 160–173 (2017).

  • 51.

    Berge, T., Daugbjerg, N. & Hansen, P. J. Isolation and cultivation of microalgae select for low growth rate and tolerance to high pH. Harmful Algae 20, 101–110 (2012).

  • 52.

    Reyserhove, L. et al. A historical perspective of nutrient change impact on an infectious disease in Daphnia. Ecology 98, 2784–2798 (2017).

  • 53.

    Figueroa, R. I., Garces, E., Massana, R. & Camp, J. Description, host-specificity, and strain selectivity of the dinoflagellate parasite Parvilucifera sinerae sp nov (Perkinsozoa). Protist 159, 563–578 (2008).

  • 54.

    Torti, A., Lever, M. A. & Jorgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genomics 24, 185–196 (2015).

  • 55.

    Corinaldesi, C., Barucca, M., Luna, G. M. & Dell’Anno, A. Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Mol. Ecol. 20, 642–654 (2011).

  • 56.

    Xu, Z. H. et al. DNA extraction, amplification and analysis of the 28S rRNA portion in sediment-buried copepod DNA in the Great Wall Bay and Xihu Lake, Antarctica. J. Plankton Res. 33, 917–925 (2011).

  • 57.

    Borin, S. et al. DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. Saline Syst. 4, 10. https://doi.org/10.1186/1746-1448-4-10 (2008).

  • 58.

    Hallsworth, J. E. et al. Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ. Microbiol. 9, 801–813 (2007).

  • 59.

    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).

    • Article
    • Google Scholar
  • 60.

    Dell’Anno, A. & Danovaro, R. Extracellular DNA plays a key role in deep-sea ecosystem functioning. Science 309, 2179–2179 (2005).

  • 61.

    Lennon, J. T., Placella, S. A. & Muscarella, M. E. Relic DNA contributes minimally to estimates of microbial diversity. bioRxiv, https://doi.org/10.1101/131284 (2017).

  • 62.

    Mulcahy, H., Charron-Mazenod, L. & Lewenza, S. Pseudomonas aeruginosa produces an extracellular deoxyribonuclease that is required for utilization of DNA as a nutrient source. Environ. Microbiol. 12, 1621–1629 (2010).

  • 63.

    Pinchuk, G. E. et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl. Environ. Microbiol. 74, 1198–1208 (2008).

  • 64.

    Corinaldesi, C., Dell’Anno, A. & Danovaro, R. Early diagenesis and trophic role of extracellular DNA in different benthic ecosystems. Limnol. Oceanogr. 52, 1710–1717 (2007).

  • 65.

    Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).

  • 66.

    Khanna, M. & Stotzky, G. Transformation Of Bacillus-Subtilis By Dna Bound On Montmorillonite And Effect Of Dnase On The Transforming Ability Of Bound Dna. Appl. Environ. Microbiol. 58, 1930–1939 (1992).

  • 67.

    Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytologist 214, 924–942 (2017).

  • 68.

    Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol. Lett. 9, https://doi.org/10.1098/rsbl.2013.0283 (2013).

  • 69.

    Olajos, F. et al. Estimating species colonization dates using DNA in lake sediment. Methods Ecol. Evol. 9, 535–543 (2018).

    • Article
    • Google Scholar
  • 70.

    Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. Roy. Soc. B: Biol. Sci. 370, https://doi.org/10.1098/rstb.2013.0383 (2015).

  • 71.

    Birks, H. J. B. & Birks, H. H. How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? N. Phytologist 209, 499–506 (2016).

  • 72.

    Anderson-Carpenter, L. L. et al. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evolutionary Biol. 11, https://doi.org/10.1186/1471-2148-11-30 (2011).

  • 73.

    Capo, E., Debroas, D., Arnaud, F. & Domaizon, I. Is planktonic diversity well recorded in sedimentary DNA? Toward the reconstruction of past protistan diversity. Microb. Ecol. 70, 865–875 (2015).

  • 74.

    Boere, A. C., Damste, J. S. S., Rijpstra, W. I. C., Volkman, J. K. & Coolen, M. J. L. Source-specific variability in post-depositional DNA preservation with potential implications for DNA based paleoecological records. Org. Geochem. 42, 1216–1225 (2011).

  • 75.

    Marshall, I. P. G., Karst, S. M., Nielsen, P. H. & Jorgensen, B. B. Metagenomes from deep Baltic Sea sediments reveal how past and present environmental conditions determine microbial community composition. Mar. Genomics 37, 58–68 (2018).

  • 76.

    Vuillemin, A. et al. Microbial community composition along a 50 000-year lacustrine sediment sequence. Fems Microbiol. Ecol. 94, https://doi.org/10.1093/femsec/fiy029 (2018).

  • 77.

    Coolen, M. J. L. & Overmann, J. 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment (vol 9, pg 238, 2007). Environ. Microbiol. 9, 1099–1099 (2007).

    • Article
    • Google Scholar
  • 78.

    Monchamp, M. E., Walser, J. C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 Years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).

  • 79.

    Monchamp, M. E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317-+ (2018).

  • 80.

    Coolen, M. J. L. & Overmann, J. Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl. Environ. Microbiol. 64, 4513–4521 (1998).

  • 81.

    Puente-Sanchez, F. et al. Viable cyanobacteria in the deep continental subsurface. Proc. Natl Acad. Sci. USA 115, 10702–10707 (2018).

  • 82.

    Monchamp, M. E., Spaak, P. & Pomati, F. Long term diversity and distribution of non-photosynthetic cyanobacteria in Peri-Alpine Lakes. Frontiers Microbiol. 9, https://doi.org/10.3389/fmicb.2018.03344 (2019).

  • 83.

    Belle, S. et al. Temporal changes in the contribution of methane-oxidizing bacteria to the biomass of chironomid larvae determined using stable carbon isotopes and ancient DNA. J. Paleolimnol. 52, 215–228 (2014).

    • Article
    • Google Scholar
  • 84.

    Madueno, L. et al. A historical legacy of antibiotic utilization on bacterial seed banks in sediments. Peerj 6, https://doi.org/10.7717/peerj.4197 (2018).

  • 85.

    Kyle, M., Haande, S., Ostermaier, V. & Rohrlack, T. The red queen race between parasitic chytrids and their host, planktothrix: a test using a time series reconstructed from sediment DNA. Plos ONE 10, https://doi.org/10.1371/journal.pone.0118738 (2015).

  • 86.

    Dutilh, B. E. et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 5, https://doi.org/10.1038/ncomms5498 (2014).

  • 87.

    Sepulveda, B. P. et al. Marine phage genomics: the tip of the iceberg. FEMS Microbiol. Lett. 363, https://doi.org/10.1093/femsle/fnw158 (2016).

  • 88.

    Sabehi, G. et al. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc. Natl Acad. Sci. USA 109, 2037–2042 (2012).

  • 89.

    Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15, 492–501 (2012).

  • 90.

    Adams, C. I. M. et al. Beyond biodiversity: can environmental DNA (eDNA) cut it as a population genetics tool? Genes 10, https://doi.org/10.3390/genes10030192 (2019).

  • 91.

    McGowan, S. et al. Controls of algal abundance and community composition during ecosystem state change. Ecology 86, 2200–2211 (2005).

    • Article
    • Google Scholar
  • 92.

    Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).

  • 93.

    Lewis, J. P. et al. The shellfish enigma across the Mesolithic-Neolithic transition in southern Scandinavia. Quat. Sci. Rev. 151, 315–320 (2016).

    • Article
    • Google Scholar
  • 94.

    Saros, J. E., Northington, R. M., Anderson, D. S. & Anderson, N. J. A whole-lake experiment confirms a small centric diatom species as an indicator of changing lake thermal structure. Limnol. Oceanogr. Lett. 1, 27–35 (2016).

    • Article
    • Google Scholar
  • 95.

    Weckstrom, K. in Applications of Paleoenvironmental Techniques in Estuarine Studies Vol. 20 (eds Weckström, K., Gell Saunders, P. & Skilbeck, G.) 615–662 (Kluwer, 2012).

  • 96.

    Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).

    • Article
    • Google Scholar
  • 97.

    Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B: Biol. Sci. 279, 4724–4733 (2012).


  • Source: Ecology - nature.com

    A genetic toolbox for marine protists

    Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest