
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).
Hall, N. S. & Paerl, H. W. Vertical migration patterns of phytoflagellates in relation to light and nutrient availability in a shallow microtidal estuary. Mar. Ecol. Prog. Ser. 425, 7–21 (2015).
Stocker, R. & Durham, W. M. Tumbling for stealth? Science 325, 400–402 (2009).
Sineshchekov, O. A., Jung, K. H. & Spudich, J. L. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 99, 8689–8694 (2002).
Elgeti, J., Winkler, R. G. & Gompper, G. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78, 1–50 (2015).
Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).
Flynn, K. J. et al. Changes in pH at the exterior surface of plankton with ocean acidification. Nat. Clim. Change 2, 510–513 (2012).
Assmy, P., Fernández-Méndez, M., Duarte, P. & Meyer, A. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).
Kim, H., Spivack, A. J. & Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: implications for bloom formation in an acidified ocean. Harmful Algae 26, 1–11 (2013).
Wheeler, G.L. in Chlamydomonas: Molecular Genetics and Physiology (Ed. Hippler, M.) 233–255 (Springer, 2017).
Waisbord, N. & Guasto, J. S. Peculiar polygonal paths. Nat. Phys. 14, 1157–1162 (2018).
Ueki, N. & Wakabayashi, K. Detergent-extracted Volvox model exhibits an anterior-posterior gradient in flagellar Ca2+ sensitivity. Proc. Natl Acad. Sci. USA 115, E1061–E1068 (2018).
Yang, X. L. et al. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56, 884–892 (2018).
Inaba, K. Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538 (2011).
Lee, J. R. et al. Climate Change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).
Smetacek, V. & Nicol, S. Polar ocean ecosystems in a changing world. Nature 437, 362–368 (2005).
Raymond, J. A. & Morgan-Kiss, R. Multiple ice-binding proteins of probable prokaryotic origin in an Antarctic lake alga, Chlamydomonas sp. ice-mdv (Chlorophyceae). J. Phycol. 53, 848–854 (2017).
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261 (2017).
Hall-Spencer, J. M. & Harvey, B. P. Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerg. Top. Life Sci. 3, 197–206 (2019).
Sunday, J. M., Fabricius, K. E., Kroeker, K. J. & Anderson, K. M. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change 7, 81 (2017).
Jeanneret, R., Contino, M. & Polin, M. A brief introduction to the model microswimmer Chlamydomonas reinhardtii. Eur. Phys. J. Spec. Top. 225, 2141–2156 (2016).
Inaba, K. & Mizuno, K. Sperm dysfunction and ciliopathy. Reprod. Med. Biol. 15, 77–94 (2016).
Platt., T., Gallagos., C. C. & Hamson., W. G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38, 687–701 (1980).
Li, Y., Horsman, M., Wang, B., Wu, N. & Lan, C. Q. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81, 629–636 (2008).
Lichtenthaler, H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382 (1987).
Sültemeyer, D. F., Klug, K. & Fock, H. P. Effect of photon fluence rate on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions grown in ambient and CO2-enriched air. Plant Physiol. 81, 372–375 (1986).
Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).
Sültemeyer, D. F., Klock, G., Kreuzberg, K. & Fock, H. P. Photosynthesis and apparent affinity for dissolved inorganic carbon by cells and chloroplasts of Chlamydomonas reinhardtii grown at high and low CO2 concentrations. Planta 176, 256–260 (1988).
Ueki, N., Ide, T., Mochiji, S., Kobayashi, Y. & Tokutsu, R. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 113, 5299–5304 (2016).
Sun, J. et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells. Plant Cell Environ. 33, 943–958 (2010).
Perovich, D. K. & Grenfell, T. C. Laboratory studies of the optical properties of young sea ice. J. Glaciol. 27, 331–346 (1981).
Massa, T., Genina, A., Shavitc, U., Grinsteind, M. & Tchernov, D. Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc. Natl Acad. Sci. USA 107, 2527–2531 (2010).
Source: Ecology - nature.com