in

Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment

  • 1.

    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

  • 2.

    Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 1–16 (2011).

    • Article
    • Google Scholar
  • 3.

    D’Odorico, P. et al. Vegetation-microclimate feedbacks in woodland-grassland ecotones. Glob. Ecol. Biogeogr. 22, 364–379 (2013).

    • Article
    • Google Scholar
  • 4.

    Van Auken, O. W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Syst. 31, 197–215 (2000).

    • Article
    • Google Scholar
  • 5.

    Knapp, A. K. et al. Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob. Change Biol. 14, 615–623 (2008).

  • 6.

    Huang, H., Zinnert, J. C., Wood, L. K., Young, D. R. & D’Odorico, P. A non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 99, 1671–1681 (2018).

  • 7.

    He, Y., D’Odorico, P. D., De Wekker, S. F. J., Fuentes, J. D. & Litvak, M. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J. Geophys. Res. 115, D21120, https://doi.org/10.1029/2009JD013529 (2010).

  • 8.

    Devaney, J. L., Lehmann, M., Feller, I. C. & Parker, J. D. Mangrove microclimates alter seedling dynamics at range edge. Ecology 98, 2513–2520 (2017).

  • 9.

    Yu, K., Saha, M. V. & D’Odorico, P. The effects of interannual rainfall variability on tree-grass composition along Kalahari rainfall gradient. Ecosystems 20, 975–988 (2017).

    • Article
    • Google Scholar
  • 10.

    Rudgers, J. A. et al. Climate sensitivity functions and net primary production: A framework for incorporating climate mean and variability. Ecology 99, 576–582 (2018).

  • 11.

    D’Odorico, P. et al. Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere 1, 1–11 (2010).

    • Article
    • Google Scholar
  • 12.

    Ratajczak, Z., Nippert, J. B., Hartman, J. C. & Ocheltree, T. W. Positive feedbacks amplify rates of woody encroachment in mesic tallgrass prairie. Ecosphere 2(11), 121, https://doi.org/10.1890/ES11-00212.1 (2011).

    • Article
    • Google Scholar
  • 13.

    Thompson, J. A., Zinnert, J. C. & Young, D. R. Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere 8, 2–e01687, https://doi.org/10.1002/ecs2.1687 (2017).

    • Article
    • Google Scholar
  • 14.

    Thomas, A. D. et al. The influence of trees, shrubs, and grasses on microclimate, soil carbon, nitrogen, and CO2 efflux: Potential implication of shrub encroachment for the Kalahari rangelands. Land Degrad. Dev. 29, 1306–1316, https://doi.org/10.1002/ldr.2918 (2018).

    • Article
    • Google Scholar
  • 15.

    Medeiros, J. S. & Pockman, W. T. Drought increases freezing tolerance of both leaves and xylem of Larrea tridentata. Plant Cell Environ. 34, 43–51 (2011).

  • 16.

    Pockman, W. T. & Sperry, J. S. Freezing-induced xylem cavitation and northern limit of Larrea tridentata. Oecologia 109, 19–27 (1997).

  • 17.

    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).

  • 18.

    Archer, S., Schimel, D. S. & Holland, E. A. Mechanisms of shrubland expansion: land use, climate or CO2? Clim. Chang. 29, 91–99 (1995).

    • Google Scholar
  • 19.

    Bühlmann, T., Hiltbrunner, E. & Körner, C. Alnus viridis expansion contributes to excess reactive nitrogen release, reduces biodiversity and constrains forest succession in the Alps. Alp. Bot. 124, 187–191 (2014).

    • Article
    • Google Scholar
  • 20.

    Sedghi, N., Adams, E. C. & Day, F. P. Carbon input and accumulation in freshwater to brackish marshes on the barrier islands of Virginia, USA. Wetlands 37, 729–739 (2017).

    • Article
    • Google Scholar
  • 21.

    Hayden, B. P., Santos, M. C. F. V., Shao, G. & Kochel, R. C. Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 12, 283–300 (1995).

  • 22.

    Battaglia, L. L., Denslow, J. S. & Hargis, T. G. Does woody species establishment alter herbaceous community composition of freshwater floating marshes? J. Coast. Res. 23, 1580–1587 (2007).

    • Article
    • Google Scholar
  • 23.

    Young, D. R. et al. Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex. Ecosystems 10, 854–863 (2007).

    • Article
    • Google Scholar
  • 24.

    Feagin, R. A. et al. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 13, 203–201 (2015).

    • Article
    • Google Scholar
  • 25.

    Zinnert, J. C. et al. Spatial-temporal dynamics in barrier island upland vegetation: the overlooked coastal landscape. Ecosystems 19, 685–697 (2016).

  • 26.

    Zinnert, J. C., Stallins, J. A., Brantley, S. T. & Young, D. R. Crossing scales: complexity of barrier island processes for predicting future change. Bioscience 67, 39–52 (2017).

    • Article
    • Google Scholar
  • 27.

    Ehrenfeld, J. G. Dynamics and processes of barrier island vegetation. Aquat. Sci. 2, 437–480 (1990).

    • Google Scholar
  • 28.

    Fenster, M. S. & Hayden, B. P. Ecotone displacement trends on a highly dynamic barrier island: Hog Island. Virginia. Estuar. Coast. 30, 978–988 (2007).

    • Article
    • Google Scholar
  • 29.

    Young, D. R., Brantley, S. T., Zinnert, J. C. & Vick, J. K. Landscape position and habitat polygons in a dynamic coastal environment. Ecosphere 2(6), art71 (2011).

    • Article
    • Google Scholar
  • 30.

    Woods, N. N. et al. Interaction between seed dispersal and environmental filtering affects woody encroachment patterns in coastal grassland. Ecosphere 10(7), e02818 (2019).

    • Article
    • Google Scholar
  • 31.

    Aguilar, C., Zinnert, J. C., Polo, M. J. & Young, D. R. NDVI as an indication for changes in water availability to woody vegetation. Ecol. Indic. 23, 290–300 (2012).

    • Article
    • Google Scholar
  • 32.

    Masterson, J. P. et al. Effects of sea-level rise on barrier island groundwater system dynamics – ecohydrological implication. Ecohydrology 7, 1064–1071 (2014).

    • Article
    • Google Scholar
  • 33.

    Zinnert, J. C. et al. Connectivity in coastal systems: Barrier island vegetation influences upland migration in a changing climate. Glob. Chang. Biol. 25, 2419–2430 (2019).

    • PubMed
    • Google Scholar
  • 34.

    Brantley, S. T. & Young, D. R. Shifts in litterfall and dominant nitrogen sources after expansion of shrub thickets. Oecologia 155, 337–345 (2008).

  • 35.

    Brantley, S. T. & Young, D. R. Linking light attenuation, sunflecks, and canopy architecture in mesic shrub thickets. Plant Ecol. 206, 225–236 (2010).

    • Article
    • Google Scholar
  • 36.

    Bissett, S. N., Zinnert, J. C. & Young, D. R. Woody expansion facilitates liana expansion and affects physical structure in temperate coastal communities. Ecosphere 7(6), e01383, https://doi.org/10.1002/ecs2.1383 (2016).

    • Article
    • Google Scholar
  • 37.

    Shiflett, S. A., Zinnert, J. C. & Young, D. R. Coordination of leaf N, anatomy, photosynthetic capacity, and hydraulics enhances evergreen expansive potential. Trees 28, 1635–1644 (2014).

  • 38.

    Adair, E. C., Hooper, D. U., Paquette, A. & Hungate, B. A. Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecol. Lett. 21, 1604–1619 (2018).

    • Article
    • Google Scholar
  • 39.

    Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. Lond. 285, 20181240 (2018).

  • 40.

    Guo, Y. et al. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100(3), e02624, https://doi.org/10.1002/ecy.2624 (2019).

  • 41.

    He, Y., D’Odorico, P. & De Wekker, S. F. J. The role of vegetation–microclimate feedback in promoting shrub encroachment in the northern Chihuahuan desert. Glob. Chang. Biol. 21, 2141–2154 (2015).

    • Article
    • Google Scholar
  • 42.

    von Arx, G., Pannatier, E. G., Thimonier, A. & Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101, 1201–1213 (2013).

    • Article
    • Google Scholar
  • 43.

    Gremer, J. R. et al. Increasing temperature seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands. Oecologia 188, 1195–1207 (2018).

  • 44.

    Moreno-de las Herras, M., Díaz-Sierra, R., Turnbull, L. & Wainwright, J. Assessing vegetation structure and ANPP dynamics in grassland-shrubland Chihuahuan ecotone using NDVI-rainfall relationships. Biogeosciences 12, 2907–2925 (2015).

  • 45.

    Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytol. 214, 41–47 (2016).

  • 46.

    Petrie, M. D. et al. Regional grassland productivity responses to precipitation during multiyear above- and below-average rainfall periods. Glob. Chang. Biol. 24, 1935–1951 (2018).

    • Article
    • Google Scholar
  • 47.

    Shao, G., Shugart, H. H. & Young, D. R. Simulation of transpiration sensitivity to environmental changes for shrub (Myrica cerifera) thickets on a Virginia barrier island. Ecol. Model. 78, 235–248 (1995).

    • Article
    • Google Scholar
  • 48.

    Young, D. R. Photosynthetic characteristics and potential moisture stress for the actinorhizal shrub, Myrica cerifera (Myricaceae), on a Virginia barrier island. Am. J. Bot., 2–7. (1992).

  • 49.

    Badano, E. I. et al. Facilitation by nurse plants contributes to vegetation recovery in human-disturbed desert ecosystems. J.Plant Ecol. 9, 485–497 (2016).

    • Article
    • Google Scholar
  • 50.

    Shackelford, N., Renton, M., Perring, M. P., Brooks, K. & Hobbs, R. J. Biodiversity change in heathland and its relationship with shifting local fire regimes and native species expansion. J. Plant Ecol. 8, 17–29 (2015).

    • Article
    • Google Scholar
  • 51.

    Zhou, L. et al. Ecological consequences of shrub encroachment in the grasslands of northern China. Landsc. Ecol. 34, 119–130 (2019).

    • Article
    • Google Scholar
  • 52.

    Valencia, E. et al. Functional diversity enhances the resistance of ecosystem functionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).

  • 53.

    Ficken, C. D. & Wright, J. P. Nitrogen uptake and biomass resprouting show contrasting relationships with resource acquisitive and conservative plant traits. J. Veg. Sci. 30, 65–74 (2019).

    • Article
    • Google Scholar
  • 54.

    Zinnert, J. C., Shiflett, S. A., Vick, J. K. & Young, D. R. Woody vegetative cover dynamics in response to recent climate change on an Atlantic coast barrier island: a remote sensing approach. Geocarto Int. 26, 595–612 (2011).

    • Article
    • Google Scholar
  • 55.

    Sinclair, M. N., Woods, N. N. & Zinnert, J. C. Seasonal facilitative and competitive trade‐offs between shrub seedlings and coastal grasses. Ecosphere 11(1), e02995 (2020).

    • Article
    • Google Scholar
  • 56.

    Daubenmire, R. F. A canopy-coverage method of vegetational analysis. Northwest Sci. 33, 43–66 (1959).

    • Google Scholar
  • 57.

    Leuning, R., Kelliher, F. M., Depury, D. G. G. & Schulze, E. D. Leaf nitrogen, photosynthesis, conductance and transpiration – scaling from leaves to canopies. Plant Cell Environ. 18, 1183–1200 (1995).

    • Article
    • Google Scholar
  • 58.

    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).

    • Article
    • Google Scholar
  • 59.

    Brantley, S.T. Seasonal and spatial variation in leaf area index, litter production and light levels in Myrica cerifera shrub thickets across a barrier island chronosequence. Masters thesis, Department of Biology, Virginia Commonwealth University, Richmond, VA. (2005).

  • 60.

    Seekell, D. A., Carpenter, S. R., Cline, T. J. & Pace, M. L. Conditional heteroskedasticity forecasts regime shift in a whole ecosystem experiment. Ecosystems 15, 741–747 (2012).

    • Article
    • Google Scholar
  • 61.

    USACE-TEC and JALBTCX Hyperspectral imagery for Hog Island, VA, 2013 ver 7. Environmental Data Initiative. https://doi.org/10.6073/pasta/6a5cc305e93c2baf9283facee688c504. Accessed 2020-03-31. (2018).


  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale