in

Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate

  • 1.

    Rintoul, S. R. & Naveira Garabato, A. C. in Ocean Circulation and Climate: A 21st Century Perspective Vol. 103 (Siedler, G. et al.) 471–492 (Academic, 2013).

  • 2.

    Deacon, G. The Hydrology of the Southern Ocean. Discovery Reports (Cambridge Univ. Press, 1937).

  • 3.

    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. Part I 42, 641–673 (1995).

    • Article
    • Google Scholar
  • 4.

    Sokolov, S. & Rintoul, S. R. Structure of Southern Ocean fronts at 140° E. J. Mar. Syst. 37, 151–184 (2002).

    • Article
    • Google Scholar
  • 5.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, C07030 (2007).

  • 6.

    Grant, S., Constable, A., Raymond, B. & Doust, S. Bioregionalisation of the Southern Ocean: Report of the Experts Workshop (ACE-CRC and WWF Australia, 2006).

  • 7.

    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).

    • Article
    • Google Scholar
  • 8.

    Sallée, J. B. Southern Ocean warming. Oceanography 31, 52–62 (2018).

    • Article
    • Google Scholar
  • 9.

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems. I: How changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014).

    • Article
    • Google Scholar
  • 10.

    Rogers, A. D. et al. Antarctic futures: an assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Annu. Rev. Mar. Sci. 12, 87–120 (2019).

    • Article
    • Google Scholar
  • 11.

    Treasure, A. et al. Marine mammals exploring the oceans pole to pole: a review of the MEOP consortium. Oceanography 30, 132–138 (2017).

    • Article
    • Google Scholar
  • 12.

    Chapman, C. C. Southern Ocean jets and how to find them: improving and comparing common jet detection methods. J. Geophys. Res. Oceans 119, 4318–4339 (2014).

    • Article
    • Google Scholar
  • 13.

    Naveira-Garabato, A. C., Ferrari, R. & Polzin, K. L. Eddy stirring in the Southern Ocean. J. Geophys. Res. Oceans 116, C09019 (2011). This paper provides a detailed examination of the ‘mixing barrier’ effect in Southern Ocean fronts, central to their role in the climate system.

    • Article
    • Google Scholar
  • 14.

    Thompson, A. F. & Sallée, J.-B. Jets and topography: jet transitions and the impact on transport in the Antarctic circumpolar current. J. Phys. Oceanogr. 42, 956–972 (2012).

    • Article
    • Google Scholar
  • 15.

    Chapman, C. & Sallée, J.-B. Isopycnal mixing suppression by the Antarctic Circumpolar Current and the Southern Ocean meridional overturning circulation. J. Phys. Oceanogr. 47, 2023–2045 (2017).

    • Article
    • Google Scholar
  • 16.

    Morrison, A., Frölicher, T. & Sarmiento, J. L. Upwelling in the Southern Ocean. Phys. Today 68, 27–32 (2015).

    • Article
    • Google Scholar
  • 17.

    Stukel, M. R. et al. Mesoscale ocean fronts enhance carbon export due to gravitational sinking and subduction. Proc. Natl Acad. Sci. USA 114, 1252–1257 (2017).

  • 18.

    Williams, R. G., Wilson, C. & Hughes, C. W. Ocean and atmosphere storm tracks: the role of eddy vorticity forcing. J. Phys. Oceanogr. 37, 2267–2289 (2007).

    • Article
    • Google Scholar
  • 19.

    Chambers, D. P. Using kinetic energy measurements from altimetry to detect shifts in the positions of fronts in the Southern Ocean. Ocean Sci. 14, 105–116 (2018).

    • Article
    • Google Scholar
  • 20.

    d’Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y. & Lévy, M. Fluid dynamical niches of phytoplankton types. Proc. Natl Acad. Sci. USA 107, 18366–18370 (2010).

    • Article
    • Google Scholar
  • 21.

    Lévy, M., Franks, P. J. S. & Shafer Smith, K. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 9, 4758 (2018).

  • 22.

    Belkin, I. M. & Gordon, A. L. Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res. Oceans 101, 3675–3696 (1996).

    • Article
    • Google Scholar
  • 23.

    Thompson, A. F., Haynes, P. H., Wilson, C. & Richards, K. J. Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL045386 (2010).

    • Article
    • Google Scholar
  • 24.

    Langlais, C., Rintoul, S. & Schiller, A. Variability and mesoscale activity of the Southern Ocean fronts: identification of a circumpolar coordinate system. Ocean Model. 39, 79–96 (2011).

    • Article
    • Google Scholar
  • 25.

    Chapman, C. C. New perspectives on frontal variability in the Southern Ocean. J. Phys. Oceanogr. 47, 1151–1168 (2017).

    • Article
    • Google Scholar
  • 26.

    Hughes, C. W. & Ash, E. R. Eddy forcing of the mean flow in the Southern Ocean. J. Geophys. Res. Oceans 106, 2713–2722 (2001).

    • Article
    • Google Scholar
  • 27.

    Hughes, C. W., Thompson, A. F. & Wilson, C. Identification of jets and mixing barriers from sea level and vorticity measurements using simple statistics. Ocean Model. 32, 44–57 (2010).

    • Article
    • Google Scholar
  • 28.

    Dufour, C. O. et al. Role of mesoscale eddies in cross-frontal transport of heat and biogeochemical tracers in the Southern Ocean. J. Phys. Oceanogr. 45, 3057–3081 (2015).

    • Article
    • Google Scholar
  • 29.

    Chapman, C. & Sallée, J.-B. Can we reconstruct mean and eddy fluxes from Argo floats? Ocean Model. 120, 83–100 (2017).

    • Article
    • Google Scholar
  • 30.

    Rintoul, S. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

  • 31.

    Sallée, J. B., Speer, K. & Morrow, R. Response of the Antarctic Circumpolar Current to atmospheric variability. J. Clim. 21, 3020–3039 (2008).

    • Article
    • Google Scholar
  • 32.

    Sokolov, S. & Rintoul, S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res. Oceans 114, https://doi.org/10.1029/2008JC005108 (2009).

  • 33.

    Sokolov, S. & Rintoul, S. R. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height. J. Geophys. Res. Oceans 114, https://doi.org/10.1029/2008JC005248 (2009).

  • 34.

    Kim, Y. S. & Orsi, A. H. On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr. 44, 3054–3071 (2014).

    • Article
    • Google Scholar
  • 35.

    Graham, R. M., de Boer, A. M., Heywood, K. J., Chapman, M. R. & Stevens, D. P. Southern Ocean fronts: controlled by wind or topography? J. Geophys. Res. Oceans 117, https://doi.org/10.1029/2012JC007887 (2012). Describes in detail the problems with ‘global’ methods for studying the variability, and the insensitivity of fronts to changes in wind forcing.

    • Article
    • Google Scholar
  • 36.

    Thompson, A. F., Haynes, P. H., Wilson, C. & Richards, K. J. Rapid Southern Ocean front transitions in an eddy-resolving ocean GCM. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL045386 (2010).

    • Article
    • Google Scholar
  • 37.

    Rhines, P. B. Jets. Chaos 4, 313–339 (1994).

    • Article
    • Google Scholar
  • 38.

    Meijers, A. J. S. et al. The role of ocean dynamics in king penguin range estimation. Nat. Clim. Change 9, 120–121 (2019).

    • Article
    • Google Scholar
  • 39.

    Moore, J. K., Abbott, M. R. & Richman, J. G. Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J. Geophys. Res. Oceans 104, 3059–3073 (1999).

    • Article
    • Google Scholar
  • 40.

    Dong, S., Sprintall, J. & Gille, S. T. Location of the Antarctic Polar Front from AMSR-E satellite sea surface temperature measurements. J. Phys. Oceanogr. 36, 2075–2089 (2006).

    • Article
    • Google Scholar
  • 41.

    Freeman, N. M., Lovenduski, N. S. & Gent, P. R. Temporal variability in the Antarctic Polar Front (2002–2014). J. Geophys. Res. Oceans 121, 7263–7276 (2016).

    • Article
    • Google Scholar
  • 42.

    Shao, A. E., Gille, S. T., Mecking, S. & Thompson, L. Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly. J. Geophys. Res. Oceans 120, 5179–5193 (2015).

    • Article
    • Google Scholar
  • 43.

    Pauthenet, E. et al. Seasonal meandering of the Polar Front upstream of the Kerguelen Plateau. Geophys. Res. Lett. 45, 9774–9781 (2018).

    • Article
    • Google Scholar
  • 44.

    Jones, D. C., Holt, H. J., Meijers, A. J. S. & Shuckburgh, E. Unsupervised clustering of Southern Ocean Argo float temperature profiles. J. Geophys. Res. Oceans 124, 390–402 (2019).

    • Article
    • Google Scholar
  • 45.

    Sallée, J.-B., Matear, R., Rintoul, S. & Lenton, A. Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nat. Geosci. 5, 579–584 (2012).

  • 46.

    Palter, J. B., Sarmiento, J. L., Marinov, I. & Gruber, N. in Chemical Oceanography of Frontal Zones (ed. Belkin, I. M.) https://doi.org/10.1007/698_2013_241 (Springer, 2013). Review of global biogeochemical fronts provides additional detail on processes described here, as well as a discussion of cross-frontal transport properties.

    • Google Scholar
  • 47.

    Freeman, N. M. et al. The variable and changing Southern Ocean silicate front: insights from the CESM Large Ensemble. Glob. Biogeochem. Cycles 32, 752–768 (2018).

  • 48.

    Langlais, C. L. et al. Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Sci. Rep. 7, 17076 (2017).

  • 49.

    Klocker, A. Opening the window to the Southern Ocean: the role of jet dynamics. Sci. Adv. 4, eaao4719 (2018). Model-based study that demonstrates the importance of frontal jet interaction with bathymetry for driving upwelling and subduction.

  • 50.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

  • 51.

    Llort, J. et al. Evaluating Southern Ocean carbon eddy-pump from biogeochemical-Argo floats. J. Geophys. Res. Oceans 123, 971–984 (2018). Using data from new biogeochemical Argo floats, this study clarifies the role of mesoscale features, including fronts, on the subduction of surface water into the ocean interior.

    • Article
    • Google Scholar
  • 52.

    Venables, H. & Moore, C. M. Phytoplankton and light limitation in the southern ocean: learning from high-nutrient, high-chlorophyll areas. J. Geophys. Res. Oceans 115, https://doi.org/10.1029/2009JC005361 (2010).

  • 53.

    Bristow, L. A., Mohr, W., Ahmerkamp, S. & Kuypers, M. M. M. Nutrients that limit growth in the ocean. Curr. Biol. 27, R474–R478 (2017).

  • 54.

    Sokolov, S. & Rintoul, S. R. On the relationship between fronts of the Antarctic Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean. J. Geophys. Res. Oceans 112, https://doi.org/10.1029/2006JC004072 (2007).

  • 55.

    Thomalla, S. J., Fauchereau, N., Swart, S. & Monteiro, P. M. S. Regional scale characteristics of the seasonal cycle of chlorophyll in the Southern Ocean. Biogeosciences 8, 2849–2866 (2011).

  • 56.

    Graham, R. M., De Boer, A. M., van Sebille, E., Kohfeld, K. E. & Schlosser, C. Inferring source regions and supply mechanisms of iron in the Southern Ocean from satellite chlorophyll data. Deep Sea Res. Part I 104, 9–25 (2015).

  • 57.

    NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra Chlorophyll Data (NASA, 2018).

  • 58.

    Hunt, B. P. V. & Hosie, G. W. Zonal structure of zooplankton communities in the Southern Ocean south of Australia: results from a 2150 km continuous plankton recorder transect. Deep Sea Res. Part I 52, 1241–1271 (2005).

    • Article
    • Google Scholar
  • 59.

    Koubbi, P. et al. Spatial distribution and inter-annual variations in the size frequency distribution and abundances of Pleuragramma antarcticum larvae in the Dumont d’Urville Sea from 2004 to 2010. Polar Sci. 5, 225–238 (2011).

    • Article
    • Google Scholar
  • 60.

    O’Toole, M., Guinet, C., Lea, M.-A. & Hindell, M. Marine predators and phytoplankton: how elephant seals use the recurrent Kerguelen plume. Mar. Ecol. Prog. Ser. 581, 215–227 (2017).

  • 61.

    Deppeler, S. L. & Davidson, A. T. Southern Ocean phytoplankton in a changing climate. Front. Mar. Sci. 4, https://doi.org/10.3389/fmars.2017.00040 (2017).

  • 62.

    Charrassin, J. B., Park, Y.-H., Le Maho, Y. & Bost, C.-A. Penguins as oceanographers unravel hidden mechanisms of marine productivity. Ecol. Lett. 5, 317–319 (2002).

    • Article
    • Google Scholar
  • 63.

    Charrassin, J. B. & Bost, C. Utilisation of the oceanic habitat by king penguins over the annual cycle. Mar. Ecol. Prog. Ser. 221, 285–297 (2001).

    • Article
    • Google Scholar
  • 64.

    Charrassin, J. B., Park, Y.-H., Le Maho, Y. & Bost, C.-A. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins. Deep Sea Res. Part I 51, 2091–2103 (2004).

    • Article
    • Google Scholar
  • 65.

    Sokolov, S., Rintoul, S. R. & Wienecke, B. Tracking the polar front south of New Zealand using penguin dive data. Deep Sea Res. Part I 53, 591–607 (2006).

    • Article
    • Google Scholar
  • 66.

    Scheffer, A., Trathan, P. N. & Collins, M. Foraging behaviour of king penguins (Aptenodytes patagonicus) in relation to predictable mesoscale oceanographic features in the Polar Front Zone to the north of South Georgia. Prog. Oceanogr. 86, 232–245 (2010). Study of a marine predator that successfully integrates biotelemetry data with environmentally remote sensed data to conclusively reveal the interactions between biology and environmental conditions.

    • Article
    • Google Scholar
  • 67.

    Péron, C., Weimerskirch, H. & Bost, C.-A. Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc. R. Soc. B 279, 2515–2523 (2012).

    • Article
    • Google Scholar
  • 68.

    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).

    • Article
    • Google Scholar
  • 69.

    Hunt, G. L. Jr, Harrison, N. M. & Cooney, R. T. The influence of hydrographic structure and prey abundance on foraging of least auklets. Stud. Avian Biol. 14, 7–22 (1990).

    • Google Scholar
  • 70.

    Woehler, E., Raymond, B. & Watts, D. J. Convergence or divergence: where do short-tailed shearwaters forage in the Southern Ocean? Mar. Ecol. Prog. Ser. 324, 261–270 (2006).

    • Article
    • Google Scholar
  • 71.

    Commins, M. L., Ansorge, I. & Ryan, P. G. Multi-scale factors influencing seabird assemblages in the African sector of the Southern Ocean. Antarct. Sci. 26, 38–48 (2014).

    • Article
    • Google Scholar
  • 72.

    Lea, M.-A. & Dubroca, L. Fine-scale linkages between the diving behaviour of Antarctic fur seals and oceanographic features in the southern Indian Ocean. ICES J. Mar. Sci. 60, 990–1002 (2003).

    • Article
    • Google Scholar
  • 73.

    Lea, M.-A. et al. Impacts of climatic anomalies on provisioning strategies of a Southern Ocean predator. Mar. Ecol. Prog. Ser. 310, 297–310 (2006).

    • Article
    • Google Scholar
  • 74.

    Guinet, C. et al. Spatial distribution of foraging in female Antarctic fur seals Arctocephalus gazella in relation to oceanographic variables: a scale-dependent approach using geographic information systems. Mar. Ecol. Prog. Ser. 219, 251–264 (2001).

    • Article
    • Google Scholar
  • 75.

    Béhagle, N. et al. Acoustic micronektonic distribution is structured by macroscale oceanographic processes across 20–50 °S latitudes in the South-Western Indian Ocean. Deep Sea Res. Part I 110, 20–32 (2016).

    • Article
    • Google Scholar
  • 76.

    Gordine, S. A., Fedak, M. A. & Boehme, L. The importance of Southern Ocean frontal systems for the improvement of body condition in southern elephant seals. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 283–304 (2019).

    • Article
    • Google Scholar
  • 77.

    Weimerskirch, H., Åkesson, S. & Pinaud, D. Postnatal dispersal of wandering albatrosses Diomedea exulans: implications for the conservation of the species. J. Avian Biol. 37, 23–28 (2006).

    • Article
    • Google Scholar
  • 78.

    Bailleul, F., Cotte, C. & Guinet, C. Mesoscale eddies as foraging area of a deep-diving predator, the southern elephant seal. Mar. Ecol. Prog. Ser. 408, 251–264 (2010).

    • Article
    • Google Scholar
  • 79.

    Della Penna, A., De Monte, S., Kestenare, E., Guinet, C. & d’Ovidio, F. Quasi-planktonic behavior of foraging top marine predators. Sci. Rep. 5, 18063 (2015).

  • 80.

    Cotté, C., d’Ovidio, F., Dragon, A.-C., Guinet, C. & Lévy, M. Flexible preference of southern elephant seals for distinct mesoscale features within the Antarctic Circumpolar Current. Prog. Oceanogr. 131, 46–58 (2015).

    • Article
    • Google Scholar
  • 81.

    Hindell, M. A. et al. Circumpolar habitat use in the southern elephant seal: implications for foraging success and population trajectories. Ecosphere 7, e01213 (2016).

    • Article
    • Google Scholar
  • 82.

    Siegelman, L., O’Toole, M., Flexas, M., Rivière, P. & Klein, P. Submesoscale ocean fronts act as biological hotspot for southern elephant seal. Sci. Rep. 9, 5588 (2019). This paper exploits a modern and unique dataset to reveal insights into both physical and biological systems that influence marine mammal behaviour.

  • 83.

    Nel, D. C. et al. Exploitation of mesoscale oceanographic features by Grey-headed Albatrosses (Thalassarche chrysostoma) in the southern Indian Ocean. Mar. Ecol. Prog. Ser. 217, 15–26 (2001).

    • Article
    • Google Scholar
  • 84.

    Swart, N. C., Gille, S., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

  • 85.

    Jones, J. et al. Assessing recent trends in high-latitude Southern Hemisphere climate. Nat. Clim. Change 6, 917–926 (2016).

    • Article
    • Google Scholar
  • 86.

    Fyfe, J. C. & Saenko, O. A. Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophys. Res. Lett. 33, https://doi.org/10.1029/2005GL025332 (2006).

  • 87.

    Bracegirdle, T. J. et al. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. J. Geophys. Res. Atmos. 118, 547–562 (2013).

    • Article
    • Google Scholar
  • 88.

    Meijers, A. J. S. The Southern Ocean in the Coupled Model Intercomparison Project phase 5. Phil. Trans. R. Soc. A 372, 20130296 (2014).

  • 89.

    Billany, W., Swart, S., Hermes, J. & Reason, C. J. C. Variability of the Southern Ocean fronts at the Greenwich Meridian. J. Mar. Syst. 82, 304–310 (2010).

    • Article
    • Google Scholar
  • 90.

    Downes, S. M., Budnick, A. S., Sarmiento, J. L. & Farneti, R. Impacts of wind stress on the Antarctic Circumpolar Current fronts and associated subduction. Geophys. Res. Lett. 38 https://doi.org/10.1029/2011GL047668 (2011).

    • Article
    • Google Scholar
  • 91.

    Gille, S. T. Decadal-scale temperature trends in the Southern Hemisphere ocean. J. Clim. 21, 4749–4765 (2008).

    • Article
    • Google Scholar
  • 92.

    Meijers, A. J. S., Bindoff, N. L. & Rintoul, S. R. Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J. Geophys. Res. Oceans 116, https://doi.org/10.1029/2010JC006832 (2011).

  • 93.

    Böning, C., Dispert, A., Visbeck, M., Rintoul, S. & Schwarzkopf, F. The response of the Antarctic Circumpolar Current to recent climate change. Nat. Geosci. 1, 864–869 (2008).

  • 94.

    Gille, S. T. Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A 372, 20130273 (2014).

    • Article
    • Google Scholar
  • 95.

    Meijers, A. J. S. et al. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios. J. Geophys. Res. Oceans 117 https://doi.org/10.1029/2012JC008412 (2012).

    • Article
    • Google Scholar
  • 96.

    Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    • Article
    • Google Scholar
  • 97.

    Armour, K. C., Marshall, J. C., Scott, J., Donohoe, A. & Newsom, E. R. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport. Nat. Geosci. 9, 549–554 (2016).

  • 98.

    Bost, C. et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6, 8220 (2015).

  • 99.

    Newman, L. et al. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Front. Mar. Sci. 6, 433 (2019).

    • Article
    • Google Scholar
  • 100.

    Garcia, H. E. et al. in World Ocean Atlas 2018 (ed. Mishonov, A.) 35 (NOAA, 2018).


  • Source: Ecology - nature.com

    Mars 2020: The search for ancient life is on

    A material’s insulating properties can be tuned at will