in

Denitrification rates in lake sediments of mountains affected by high atmospheric nitrogen deposition

  • 1.

    Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A. & Butterbach-Bahl, K. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Env. Sustainability 3, 281–290, https://doi.org/10.1016/j.cosust.2011.08.012 (2011).

    • Article
    • Google Scholar
  • 2.

    Rockstrom, J. et al. A safe operating space for humanity. Nat. 461, 472–475, https://doi.org/10.1038/461472a (2009).

  • 3.

    Galloway, J. N. et al. The nitrogen cascade. Biosci. 53, 341–356, https://doi.org/10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2 (2003).

    • Article
    • Google Scholar
  • 4.

    Seitzinger, S. P. et al. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 16, 2064–2090, https://doi.org/10.1890/1051-0761(2006)016[2064:dalawa]2.0.co;2 (2006).

  • 5.

    Kuypers, M. M. M., Marchant, H. K. & Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 16, 263–276, https://doi.org/10.1038/nrmicro.2018.9 (2018).

  • 6.

    Tiedje, J. M. In Environmental Microbiology of Anaerobes Vol. 717 (ed. Zehnder, A. J. B.) Ch. 4. Ecology of denitrification and dissimilatory nitrate reduction to ammonium, 179–244 (John Wiley and Sons, 1988).

  • 7.

    Bergstrom, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 12, 635–643, https://doi.org/10.1111/j.1365-2486.2006.01129.x (2006).

  • 8.

    Catalan, J. et al. Global change revealed by palaeolimnological records from remote lakes: a review. J. Paleolimnol. 49, 513–535, https://doi.org/10.1007/s10933-013-9681-2 (2013).

  • 9.

    Baron, J. S., Driscoll, C. T., Stoddard, J. L. & Richer, E. E. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. Biosci. 61, 602–613, https://doi.org/10.1525/bio.2011.61.8.6 (2011).

    • Article
    • Google Scholar
  • 10.

    Camarero, L. In High Mountain Conservation in a Changing World (eds. Jordi Catalan, J. M. Ninot & M. Mercè Aniz) 325–341 (Springer, 2017).

  • 11.

    Axler, R., Rose, C. & Tikkanen, C. A. Phytoplankton nutrient deficiency as related to atmospheric nitrogen deposition in northern Minnesota acid-sensitive lakes. Can. J. Fish. Aquat. Sci. 51, 1281–1296, https://doi.org/10.1139/f94-128 (1994).

    • Article
    • Google Scholar
  • 12.

    Camarero, L. & Catalan, J. Variability in the chemistry of precipitation in the Pyrenees (northeastern Spain): Dominance of storm origin and lack of altitude influence. J. Geophys. Res. 101, 29491–29498, https://doi.org/10.1029/96JD01816 (1996).

  • 13.

    Camarero, L. et al. Regionalisation of chemical variability in European mountain lakes. Freshw. Biol. 54, 2452–2469, https://doi.org/10.1111/j.1365-2427.2009.02296.x (2009).

  • 14.

    Catalan, J. et al. Ecological thresholds in European alpine lakes. Freshw. Biol. 54, 2494–2517, https://doi.org/10.1111/j.1365-2427.2009.02286.x (2009).

  • 15.

    Galloway, J. N. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226, https://doi.org/10.1007/s10533-004-0370-0 (2004).

  • 16.

    Palacin-Lizarbe, C., Camarero, L. & Catalan, J. Denitrification temperature dependence in remote, cold, and N-poor lake sediments. Water Resour. Res. 54, 1161–1173, https://doi.org/10.1002/2017WR021680 (2018).

  • 17.

    Castellano-Hinojosa, A., Correa-Galeote, D., Carrillo, P., Bedmar, E. J. & Medina-Sánchez, J. M. Denitrification and biodiversity of denitrifiers in a high-mountain Mediterranean lake. Front. Microbiol. 8, 1911, https://doi.org/10.3389/fmicb.2017.01911 (2017).

  • 18.

    McCrackin, M. L. & Elser, J. J. Atmospheric nitrogen deposition influences denitrification and nitrous oxide production in lakes. Ecol. 91, 528–539, https://doi.org/10.1890/08-2210.1 (2010).

    • Article
    • Google Scholar
  • 19.

    McCrackin, M. L. & Elser, J. J. Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA). Biogeochemistry 108, 39–54, https://doi.org/10.1007/s10533-011-9571-5 (2012).

  • 20.

    Vila-Costa, M. et al. Macrophyte landscape modulates lake ecosystem-level nitrogen losses through tightly coupled plant-microbe interactions. Limnol. Oceanogr. 61, 78–88, https://doi.org/10.1002/lno.10209 (2016).

  • 21.

    Seitzinger, S. P. Denitrification in fresh-water and coastal marine ecosystems- ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724, https://doi.org/10.4319/lo.1988.33.4part2.0702 (1988).

  • 22.

    Bruesewitz, D. A., Tank, J. L. & Hamilton, S. K. Incorporating spatial variation of nitrification and denitrification rates into whole-lake nitrogen dynamics. J. Geophys. Research-Biogeosciences 117, G00N07, https://doi.org/10.1029/2012jg002006 (2012).

  • 23.

    Rissanen, A., Tiirola, M. & Ojala, A. Spatial and temporal variation in denitrification and in the denitrifier community in a boreal lake. Aquat. Microb. Ecol. 64, 27–40, https://doi.org/10.3354/ame01506 (2011).

    • Article
    • Google Scholar
  • 24.

    Saunders, D. & Kalff, J. Denitrification rates in the sediments of Lake Memphremagog, Canada–USA. Water Res. 35, 1897–1904, https://doi.org/10.1016/S0043-1354(00)00479-6 (2001).

  • 25.

    Nizzoli, D. et al. Denitrification in a meromictic lake and its relevance to nitrogen flows within a moderately impacted forested catchment. Biogeochemistry 137, 143–161, https://doi.org/10.1007/s10533-017-0407-9 (2018).

  • 26.

    Zhao, S., Wang, Q., Zhou, J., Yuan, D. & Zhu, G. Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone. Sci. Total. Env. 642, 1090–1099, https://doi.org/10.1016/j.scitotenv.2018.06.110 (2018).

  • 27.

    Ahlgren, I. Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23, 367–377 (1994).

    • Google Scholar
  • 28.

    Eriksson, P. G. & Weisner, S. E. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium‐rich aquatic systems. Limnol. Oceanogr. 44, 1993–1999, https://doi.org/10.4319/lo.1999.44.8.1993 (1999).

  • 29.

    Nizzoli, D., Welsh, D. T., Longhi, D. & Viaroli, P. Influence of Potamogeton pectinatus and microphytobenthos on benthic metabolism, nutrient fluxes and denitrification in a freshwater littoral sediment in an agricultural landscape: N assimilation versus N removal. Hydrobiologia 737, 183–200, https://doi.org/10.1007/s10750-013-1688-1 (2014).

  • 30.

    Veraart, A. J., de Bruijne, W. J., de Klein, J. J., Peeters, E. T. & Scheffer, M. Effects of aquatic vegetation type on denitrification. Biogeochemistry 104, 267–274, https://doi.org/10.1007/s10533-010-9500-z (2011).

    • Article
    • Google Scholar
  • 31.

    Groffman, P. M. et al. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry 93, 49–77, https://doi.org/10.1007/s10533-008-9277-5 (2009).

  • 32.

    Parkin, T. B. Soil microsites as a source of denitrification variability. Soil. Sci. Soc. Am. J. 51, 1194–1199 (1987).

  • 33.

    Peterson, C. et al. Development of associations between microalgae and denitrifying bacteria in streams of contrasting anthropogenic influence. FEMS Microbiol. Ecol. 77, 477–492, https://doi.org/10.1111/j.1574-6941.2011.01131.x (2011).

  • 34.

    Mezzari, M. P. et al. Assessment of N2O emission from a photobioreactor treating ammonia-rich swine wastewater digestate. Bioresour. Technol. 149, 327–332, https://doi.org/10.1016/j.biortech.2013.09.065 (2013).

  • 35.

    Chen, X., Yang, L., Xiao, L., Miao, A. & Xi, B. Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. J. Freshw. Ecol. 27, 243–258, https://doi.org/10.1080/02705060.2011.644405 (2012).

  • 36.

    Gardner, W. S. et al. Community biological ammonium demand: a conceptual model for Cyanobacteria blooms in eutrophic lakes. Env. Sci. Technol. 51, 7785–7793, https://doi.org/10.1021/acs.est.6b06296 (2017).

  • 37.

    Sand-Jensen, K., Prahl, C. & Stokholm, H. Oxygen release from roots of submerged aquatic macrophytes. Oikos 38, 349–354 (1982).

    • Article
    • Google Scholar
  • 38.

    Gacia, E., Chappuis, E., Lumbreras, A., Riera, J. L. & Ballesteros, E. Functional diversity of macrophyte communities within and between Pyrenean lakes. J. Limnol. 68, 25–36, https://doi.org/10.4081/jlimnol.2009.25 (2009).

    • Article
    • Google Scholar
  • 39.

    Palacin-Lizarbe, C. et al. The DNRA-denitrification dichotomy differentiates nitrogen transformation pathways in mountain lake benthic habitats. Front. Microbiol. 10, 1229, https://doi.org/10.3389/fmicb.2019.01229 (2019).

  • 40.

    Palacin-Lizarbe, C., Camarero, L. & Catalan, J. Estimating sediment denitrification rates using cores and N2O microsensors. J Vis Exp, e58553, https://doi.org/10.3791/58553 (2018).

  • 41.

    Catalan, J., Ballesteros, E., Gacia, E., Palau, A. & Camarero, L. Chemical-composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: a reference for acidified sites. Water Res. 27, 133–141, https://doi.org/10.1016/0043-1354(93)90203-t (1993).

  • 42.

    Vila-Costa, M., Bartrons, M., Catalan, J. & Casamayor, E. O. Nitrogen-cycling genes in epilithic biofilms of oligotrophic high-altitude lakes (Central Pyrenees, Spain). Microb. Ecol. 68, 60–69, https://doi.org/10.1007/s00248-014-0417-2 (2014).

  • 43.

    Gacia, E. et al. Macrophytes from lakes in the eastern Pyrenees: community composition and ordination in relation to environmental factors. Freshw. Biol. 32, 73–81, https://doi.org/10.1111/j.1365-2427.1994.tb00867.x (1994).

    • Article
    • Google Scholar
  • 44.

    Glew, J. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5, 285–287, https://doi.org/10.1007/BF00200351 (1991).

  • 45.

    Balderston, W. L., Sherr, B. & Payne, W. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Env. Microbiol. 31, 504–508 (1976).

  • 46.

    Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous-oxide reduction by denitrifying bacteria. Biochem. Bioph. Res. Co. 69, 705–710, https://doi.org/10.1016/0006-291x(76)90932-3 (1976).

  • 47.

    Groffman, P. M. et al. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecol. Appl. 16, 2091–2122, doi:10.1890/1051-0761(2006)016[2091:mfmdda]2.0.co;2 (2006).

  • 48.

    Seitzinger, S. P., Nielsen, L. P., Caffrey, J. & Christensen, P. B. Denitrification measurements in aquatic sediments – a comparison of 3 methods. Biogeochemistry 23, 147–167, https://doi.org/10.1007/bf00023750 (1993).

  • 49.

    Andersen, K., Kjaer, T. & Revsbech, N. P. An oxygen insensitive microsensor for nitrous oxide. Sens. Actuators B-Chemical 81, 42–48, https://doi.org/10.1016/s0925-4005(01)00924-8 (2001).

  • 50.

    Weiss, R. F. & Price, B. A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359, https://doi.org/10.1016/0304-4203(80)90024-9 (1980).

  • 51.

    Camarero, L. & Catalan, J. Atmospheric phosphorus deposition may cause lakes to revert from phosphorus limitation back to nitrogen limitation. Nat. Commun. 3, 1118, https://doi.org/10.1038/ncomms2125 (2012).

  • 52.

    Catalan, J., Camarero, L., Gacia, E., Ballesteros, E. & Felip, M. Nitrogen in the Pyrenean lakes (Spain). Hydrobiologia 274, 17–27, https://doi.org/10.1007/BF00014623 (1994).

  • 53.

    Behrendt, A., de Beer, D. & Stief, P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences 10, 7509–7523, https://doi.org/10.5194/bg-10-7509-2013 (2013).

  • 54.

    Laverman, A. M., Meile, C., Van Cappellen, P. & Wieringa, E. B. A. Vertical distribution of denitrification in an estuarine sediment: Integrating sediment flowthrough reactor experiments and microprofiling via reactive transport modeling. Appl. Env. Microbiol. 73, 40–47, https://doi.org/10.1128/AEM.01442-06. (2007).

  • 55.

    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol. 25, 101–110, https://doi.org/10.1023/a:1008119611481 (2001).

  • 56.

    Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143–2152, https://doi.org/10.1890/1051-0761(2006)016[2143:ecodca]2.0.co;2 (2006).

    • Article
    • Google Scholar
  • 57.

    R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at, http://www.r-project.org (2019).

  • 58.

    MuMIn: multi-model inference. R package version1.15.6, https://CRAN.R-project.org/package=MuMIn (2016).

  • 59.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Linear and nonlinear mixed effects models. R. package version 3, 57 (2007).

    • Google Scholar
  • 60.

    Cavaliere, E. & Baulch, H. M. Denitrification under lake ice. Biogeochemistry 137, 285–295, https://doi.org/10.1007/s10533-018-0419-0 (2018).

  • 61.

    Small, G. E. et al. Large differences in potential denitrification and sediment microbial communities across the Laurentian great lakes. Biogeochemistry 128, 353–368, https://doi.org/10.1007/s10533-016-0212-x (2016).

  • 62.

    Marietou, A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol. Lett. 363, fnw155, https://doi.org/10.1093/femsle/fnw155 (2016).


  • Source: Ecology - nature.com

    Biodiversity theory backed by island bird data

    Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum