in

Diagnostic Uncertainty and the Epidemiology of Feline Foamy Virus in Pumas (Puma concolor)

  • 1.

    Linial, M. Why aren’t foamy viruses pathogenic? Trends Microbiol 8, 284–289 (2000).

  • 2.

    Saib, A. In Foamy Viruses Current Topics in Microbiology and Immunology (ed Axel Rethwilm) 197–211 (Springer, 2003).

  • 3.

    Mochizuki, M., Akuzawa, M. & Nagatomo, H. Serological survey of the Iriomote cat (Felis Iriomotensis) in Japan. J Wildl Dis 26, 236–245 (1990).

  • 4.

    Miyazawa, T. et al. Seroepidemiological survey of feline retrovirus infections in domestic and leopard cats in northern Vietnam in 1997. J Vet Med Sci 60, 1273–1275 (1998).

  • 5.

    Daniels, M. J., Golder, M. C., Jarrett, O. & MacDonald, D. W. Feline viruses in wildcats from Scotland. J Wildl Dis 35, 121–124 (1999).

  • 6.

    Nakamura, K. et al. Contrastive prevalence of feline retrovirus infections between northern and southern Vietnam. J Vet Med Sci 62, 921–923 (2000).

  • 7.

    Flower, R. L. P., Wilcox, G. E., Cook, R. D. & Ellis, T. M. Detection and prevalence of serotypes of feline syncytial spumaviruses. Arch Virol 83, 53–63 (1985).

  • 8.

    Bandecchi, P. et al. Prevalence of feline immunodeficiency virus and other retroviral infections in sick cats in Italy. Vet Immunol Immunopathol 31, 337–345 (1992).

  • 9.

    Winkler, I. G. et al. A rapid streptavidin-capture ELISA specific for the detection of antibodies to feline foamy virus. J Immunol Methods 207, 69–77 (1997).

  • 10.

    Glaus, T. et al. Seroprevalence of Bartonella henselae infection and correlation with disease status in cats in Switzerland. J Clin Microbiol 35, 2883–2885 (1997).

  • 11.

    Winkler, I. G., Flugel, R. M., Lochelt, M. & Flower, R. L. P. Detection and molecular characterisation of feline foamy virus serotypes in naturally infected cats. Virology (New York, N.Y.) 247, 144–151 (1998).

    • CAS
    • Google Scholar
  • 12.

    Winkler, I. G., Lochelt, M. & Flower, R. L. P. Epidemiology of feline foamy virus and feline immunodeficiency virus infections in domestic and feral cats: a seroepidemiological study. J Clin Microbiol 37, 2848–2851 (1999).

  • 13.

    Romen, F. et al. Antibodies against Gag are diagnostic markers for feline foamy virus infections while Env and Bet reactivity is undetectable in a substantial fraction of infected cats. Virology (Lond) 345, 502–508 (2006).

  • 14.

    Bleiholder, A. et al. Pattern of seroreactivity against feline foamy virus proteins in domestic cats from Germany. Vet Immunol Immunopathol 143, 292–300 (2011).

  • 15.

    Kechejian, R. S. et al. Feline foamy virus is highly prevalent in free-ranging Puma concolor from Colorado, Florida and southern California. Viruses 11, 359 (2019).

    • Article
    • Google Scholar
  • 16.

    Pedersen, N. C., Pool, R. R. & Obrien, T. Feline chronic progressive polyarthritis. Am J Vet Res 41, 522–535 (1980).

  • 17.

    Yamamoto, J. K. et al. Epidemiologic and clinical aspects of feline immunodeficiency virus-infection in cats from the continental United States and Canada and possible mode of transmission. J Am Vet Med Assoc 194, 213–220 (1989).

  • 18.

    Kechejian, S. et al. Feline foamy virus seroprevalence and demographic risk factors in stray domestic cat populations in Colorado, Southern California and Florida, USA. JFMS Open Rep 5, 2055116919873736 (2019).

  • 19.

    Greiner, M. & Gardner, I. A. Epidemiologic issues in the validation of veterinary diagnostic tests. Prev Vet Med 45, 3–22 (2000).

  • 20.

    van Smeden, M., Naaktgeboren, C. A., Reitsma, J. B., Moons, K. G. M. & de Groot, J. A. H. Latent class models in diagnostic studies when there is no reference standard—a systematic review. Am J Epidemiol 179, 423–431 (2014).

  • 21.

    Enoe, C., Georgiadis, M. P. & Johnson, W. O. Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev Vet Med 45, 61–81 (2000).

  • 22.

    Hanson, T., Johnson, W. O. & Gardner, I. A. Hierarchical models for estimating herd prevalence and test accuracy in the absence of a gold standard. J Agric Biol Environ Stat 8, 223–239 (2003).

    • Article
    • Google Scholar
  • 23.

    Branscum, A. J., Gardner, I. A. & Johnson, W. O. Bayesian modeling of animal- and herd-level prevalences. Prev Vet Med 66, 101–112 (2004).

  • 24.

    Dendukuri, N., Rahme, E., Belisle, P. & Joseph, L. Bayesian sample size determination for prevalence and diagnostic test studies in the absence of a gold standard test. Biometrics 60, 388–397 (2004).

  • 25.

    Branscum, A. J., Gardner, I. A. & Johnson, W. O. Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Prev Vet Med 68, 145–163 (2005).

  • 26.

    Carver, S. et al. Pathogen exposure varies widely among sympatric populations of wild and domestic felids across the United States. Ecol Appl 26, 367–381 (2016).

    • Article
    • Google Scholar
  • 27.

    Kraberger, S. et al. Frequent cross-species transmissions of foamy virus between domestic and wild felids, Virus Evolution 6(1), vez058, https://doi.org/10.1093/ve/vez058 (2020).

  • 28.

    Lee, J. S. et al. Targeted enrichment for pathogen detection and characterization in three felid species. J Clin Microbiol 55, 1658–1670 (2017).

  • 29.

    Ledesma-Feliciano, C. et al. Replacement of feline foamy virus bet by feline immunodeficiency virus vif yields replicative virus with novel vaccine candidate potential. Retrovirology 15, 15–38 (2018).

  • 30.

    Alke, A., Schwantes, A., Zemba, M., Flügel, R. M. & Löchelt, M. Characterization of the humoral immune response and virus replication in cats experimentally infected with feline foamy virus. Virology 275, 170–176 (2000).

  • 31.

    Ledesma-Feliciano, C. et al. Feline Foamy Virus Infection: Characterization of experimental infection and prevalence of natural infection in domestic cats with and without chronic kidney disease. Viruses 11, 662 (2019).

  • 32.

    Cohen, J. A coefficient of agreement for nominal scales. Educ Psychol Meas 20, 37–46 (1960).

    • Article
    • Google Scholar
  • 33.

    Byrt, T., Bishop, J. & Carlin, J. B. Bias, prevalence and kappa. J Clin Epidemiol 46, 423–429 (1993).

  • 34.

    McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 12, 153–157 (1947).

  • 35.

    Stevenson, M. et al. epiR: tools for the analysis of epidemiological data. R package version 0, 9–87 (2017).

    • Google Scholar
  • 36.

    Lewis, F. I. & Torgerson, P. R. A tutorial in estimating the prevalence of disease in humans and animals in the absence of a gold standard diagnostic. Emerg Themes Epidemiol 9 (2012).

  • 37.

    Joseph, L., Gyorkos, T. W. & Coupal, L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 141, 263–272 (1995).

  • 38.

    Kehl, T. et al. Complete genome sequences of two novel Puma concolor foamy viruses from California. Genome Announc 1, e0020112 (2013).

  • 39.

    Plummer, M. in 3rd International Workshop on Distributed Statistical Computing. 125 (Vienna, Austria).

  • 40.

    Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).

    • Google Scholar
  • 41.

    Gelman, A. et al. Bayesian Data Analysis. 3rd edn, (Chapman and Hall/CRC, 2013).

  • 42.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 43.

    Kozakiewicz, C. P. et al. Pathogens in space: advancing understanding of pathogen dynamics and disease ecology through landscape genetics. Evol Appl 11, 1763–1778 (2018).

  • 44.

    Cunningham, M. W. et al. Epizootiology and management of feline leukemia virus in the Florida puma. J Wildl Dis 44, 537–552 (2008).

  • 45.

    Cavalcante, L. T. F. et al. Clinical and Molecular Features of Feline Foamy Virus and Feline Leukemia Virus Co-Infection in Naturally-Infected Cats. Viruses 10, 702 (2018).

  • 46.

    Gardner, I. A., Stryhn, H., Lind, P. & Collins, M. T. Conditional dependence between tests affects the diagnosis and surveillance of animal diseases. Prev Vet Med 45 (2000).

  • 47.

    Troyer, R. M. et al. Novel gammaherpesviruses in North American domestic cats, bobcats, and pumas: identification, prevalence, and risk factors. J Virol 88, 3914–3924 (2014).

  • 48.

    Loisel, D. A., Troyer, R. M. & VandeWoude, S. High prevalence of Lynx rufus gammaherpesvirus 1 in wild Vermont bobcats. PeerJ 6, e4982 (2018).

  • 49.

    Elbroch, L. M., Levy, M., Lubell, M., Quigley, H. & Caragiulo, A. Adaptive social strategies in a solitary carnivore. Sci Adv 3, e1701218 (2017).


  • Source: Ecology - nature.com

    What is the future of lighting waste?

    MIT helps first-time entrepreneur build food hospitality company