in

Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil

  • 1.

    IBGE. (ed Desenvolvimento e Gestão Instituto Brasileiro de Geografia e Estatística—Ministério do Planejamento) 108 (Ministério do Planejamento, Desenvolvimento e Gestão, Rio de Janeiro, RJ, 2018).

  • 2.

    Dias-Filho, M. B. Diagnóstico das Pastagens no Brasil. 36 (Embrapa Amazônia Oriental, Belém, 2014).

    Google Scholar 

  • 3.

    Ferraz, J. B. & Felicio, P. E. Production systems—an example from Brazil. Meat Sci. 84, 238–243. https://doi.org/10.1016/j.meatsci.2009.06.006 (2010).

    Article  PubMed  Google Scholar 

  • 4.

    Dias-Filho, M. B. Os desafios da produção animal em pastagens na fronteira agrícola brasileira. Revista Brasileira de Zootecnia 40, 243–252 (2011).

    Google Scholar 

  • 5.

    Murgueitio, E., Calle, Z., Uribe, F., Calle, A. & Solorio, B. Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands. For. Ecol. Manag. 261, 1654–1663. https://doi.org/10.1016/j.foreco.2010.09.027 (2011).

    Article  Google Scholar 

  • 6.

    Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 76, 1–10. https://doi.org/10.1007/s10457-009-9229-7 (2009).

    Article  Google Scholar 

  • 7.

    Leme, T., Pires, M. D. A., Verneque, R. D., Alvim, M. J. & Aroeira, L. J. M. Behavior of holstein x zebu crossbreed cows grazing Brachiaria decumbens in a silvipastoral system. Cienc. Agrotecnol. 29, 668–675. https://doi.org/10.1590/s1413-70542005000300023 (2005).

    Article  Google Scholar 

  • 8.

    Stern, V. M., Adkisson, P. L., G., O. B. & Viktorov, G. A. In Theory and Practice of Biological Control (eds C.B. Huffaker & P.S. Messenger) 593–613 (Academic Press, Cambridge, 1976).

  • 9.

    Arellano, L., León-Cortés, J. L., Halffter, G. & Montero, J. Acacia woodlots, cattle and dung beetles (Coleoptera: Scarabaeinae) in a Mexican silvopastoral landscape. Rev. Mexicana Biodivers. 84, 650–660. https://doi.org/10.7550/rmb.32911 (2013).

    Article  Google Scholar 

  • 10.

    Auad, A. M., Carvalho, C. A., Clemente, M. A. & Prezoto, F. Diversity of social wasps (Hymenoptera) in a silvipastoral system. Sociobiology 55, 627–636 (2010).

    Google Scholar 

  • 11.

    Auad, A. M. & de Carvalho, C. A. Faunistic analysis of beetles (coleoptera) in a silvopastoral system. Cienc. Florest. 21, 31–39 (2011).

    Article  Google Scholar 

  • 12.

    Auad, A. M., Resende, T. T., da Silva, D. M. & das Graças Fonseca, M. Hymenoptera (Insecta: Hymenoptera) associated with silvopastoral systems. Agrofor. Syst. 85, 113–119. https://doi.org/10.1007/s10457-011-9449-5 (2012).

    Article  Google Scholar 

  • 13.

    Giraldo, C., Escobar, F., Chará, J. D. & Calle, Z. The adoption of silvopastoral systems promotes the recovery of ecological processes regulated by dung beetles in the Colombian Andes. Insect Conserv. Divers. 4, 115–122. https://doi.org/10.1111/j.1752-4598.2010.00112.x (2011).

    Article  Google Scholar 

  • 14.

    Jerrentrup, J. S., Wrage-Mönnig, N., Röver, K.-U., Isselstein, J. & McKenzie, A. Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J. Appl. Ecol. 51, 968–977. https://doi.org/10.1111/1365-2664.12244 (2014).

    Article  Google Scholar 

  • 15.

    Auad, A. M. et al. Does the silvopastoral system alter hymenopteran fauna (Insecta: Hymenoptera) in Brachiaria decumbens monocultures?. Ann. Entomol. Soc. Am. 108, 468–473. https://doi.org/10.1093/aesa/sav035 (2015).

    Article  Google Scholar 

  • 16.

    Wink, C., Guedes, J. V. C., Fagundes, C. K. & Rovedder, A. P. Insetos edáficos como indicadores de qualidade ambiental. Revista de Ciências Agroveterinárias 4, 60–71 (2005).

    Google Scholar 

  • 17.

    Santos, M. S. et al. Riqueza de formigas (Hymenoptera, Formicidae) da serapilheira em fragmentos de floresta semidecídua da Mata Atlântica na região do Alto do Rio Grande, MG, Brasil. Iheringia Série Zool. 96, 95–101 (2006).

    Article  Google Scholar 

  • 18.

    Huber, J. T. In Insect Biodiversity (eds Robert, G. F. & Peter, H. A.) 419–462 (Wiley-Blackwell, Hoboken, 2017).

  • 19.

    Barbieri, C. A. & Dias, A. M. P. Braconidae (Hymenoptera) fauna in native, degraded and restoration areas of the Vale do Paraiba, Sao Paulo state, Brazil. Braz. J. Biol. 72, 305–310. https://doi.org/10.1590/s1519-69842012000200011 (2012).

    Article  Google Scholar 

  • 20.

    Morato, E. F. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias na Amazônia Central. II. Estratificação vertical. Revista Brasileira de Zoologia 18, 737–747 (2001).

    Article  Google Scholar 

  • 21.

    Morato, E. F. & Campos, L. A. D. O. Efeitos da fragmentação florestal sobre vespas e abelhas solitárias em uma área da Amazônia Central. Rev. Bras. Zool. 17, 429–444 (2000).

    Article  Google Scholar 

  • 22.

    Rocha, W. D. O., Dorval, A., Peres Filho, O., Vaez, C. D. A. & Ribeiro, E. S. Formigas (Hymenoptera: Formicidae) Bioindicadoras de Degradação Ambiental em Poxoréu, Mato Grosso, Brasil. Floresta e Ambiente 22, 88–98. https://doi.org/10.1590/2179-8087.0049 (2015).

    Article  Google Scholar 

  • 23.

    Cosenza, G. W., Andrade, R. P. D., Gomes, D. T. & Rocha, C. M. C. D. Resistência de gramíneas forrageiras à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 24, 961–968 (1989).

    Google Scholar 

  • 24.

    Hewitt, G. B. Grazing management as a means of regulating spittlebug (homoptera: cercopidae) numbers in central Brazil. Pesqui. Agropecu. Bras. 23, 697–707 (1988).

    Google Scholar 

  • 25.

    Souza, J. C., Silva, R. A., Reis, P. R., Queiroz, D. S. & Silva, D. B. Cigarrinhas das pastagens: histórico, bioecologia, prejuízos, monitoramento e medidas de controle. 8 (Epamig, Belo Horizonte, 2008).

  • 26.

    Aguirre, L. M., Cardona, C., Miles, J. W. & Sotelo, G. Characterization of resistance to adult spittlebugs (Hemiptera: Cercopidae) in Brachiaria spp.. J. Econ. Entomol. 106, 1871–1877. https://doi.org/10.1603/ec11189 (2013).

    Article  PubMed  Google Scholar 

  • 27.

    Shi, L., Feng, W., Xu, J. & Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 29, 3886–3897. https://doi.org/10.1002/ldr.3136 (2018).

    Article  Google Scholar 

  • 28.

    Kruess, A. & Tscharntke, T. Grazing intensity and the diversity of grasshoppers, butterflies, and trap-nesting bees and wasps. Conserv. Biol. 16, 1570–1580. https://doi.org/10.1046/j.1523-1739.2002.01334.x (2002).

    Article  Google Scholar 

  • 29.

    Nemec, K. T. & Bragg, T. B. Plant-feeding hemiptera and orthoptera communities in native and restored mesic tallgrass prairies. Restor. Ecol. 16, 324–335. https://doi.org/10.1111/j.1526-100X.2007.00306.x (2008).

    Article  Google Scholar 

  • 30.

    Moir, M. L., Brennan, K. E. C., Koch, J. M., Majer, J. D. & Fletcher, M. J. Restoration of a forest ecosystem: The effects of vegetation and dispersal capabilities on the reassembly of plant-dwelling arthropods. For. Ecol. Manag. 217, 294–306. https://doi.org/10.1016/j.foreco.2005.06.012 (2005).

    Article  Google Scholar 

  • 31.

    Cajaiba, R. L. Seasonal patterns in the diversity of histerid beetles (Histeridae) are ecosystem specific? A case in Para State, Northern Brazil. Appl. Ecol. Environ. Res. 15, 1227–1237. https://doi.org/10.15666/aeer/1504_12271237 (2017).

    Article  Google Scholar 

  • 32.

    Garcia-Martinez, M. A. et al. Taxonomic, species and functional group diversity of ants in a tropical anthropogenic landscape. Trop. Conserv. Sci. 8, 1017–1032. https://doi.org/10.1177/194008291500800412 (2015).

    Article  Google Scholar 

  • 33.

    Zhang, W., Ricketts, T. H., Kremen, C., Carney, K. & Swinton, S. M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 64, 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024 (2007).

    Article  Google Scholar 

  • 34.

    Schweiger, O. et al. Functional richness of local hoverfly communities (Diptera, Syrphidae) in response to land use across temperate Europe. Oikos 116, 461–472. https://doi.org/10.1111/j.2007.0030-1299.15372.x (2007).

    Article  PubMed  Google Scholar 

  • 35.

    Marchao, R. L. et al. Soil macrofauna under integrated crop-livestock systems in a Brazilian Cerrado Ferralsol. Pesqui. Agropecu. Bras. 44, 1011–1020. https://doi.org/10.1590/s0100-204×2009000800033 (2009).

    Article  Google Scholar 

  • 36.

    Tidon-Sklorz, R. & Sene, F. D. M. Vertical and temporal distribution of Drosophila (Diptera, Drosophilidae) species in a wooded area in the State of São Paulo, Brazil. Rev. Bras. Biol. 52, 311–317 (1992).

    Google Scholar 

  • 37.

    Medeiros, H. R. et al. Non-crop habitats modulate alpha and beta diversity of flower flies (Diptera, Syrphidae) in Brazilian agricultural landscapes. Biodivers. Conserv. 27, 1309–1326. https://doi.org/10.1007/s10531-017-1495-5 (2017).

    Article  Google Scholar 

  • 38.

    Schirmel, J. et al. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. J. Appl. Ecol. 55, 1747–1758. https://doi.org/10.1111/1365-2664.13095 (2018).

    Article  Google Scholar 

  • 39.

    Ricarte, A., Ángeles Marcos-García, M. & Moreno, C. E. Assessing the effects of vegetation type on hoverfly (Diptera: Syrphidae) diversity in a Mediterranean landscape: Implications for conservation. J. Insect Conserv. 15, 865–877. https://doi.org/10.1007/s10841-011-9384-9 (2011).

    Article  Google Scholar 

  • 40.

    Letourneau, D. K., Allen, S. G. B. & Stireman, J. O. Perennial habitat fragments, parasitoid diversity and parasitism in ephemeral crops. J. Appl. Ecol. 49, 1405–1416. https://doi.org/10.1111/1365-2664.12001 (2012).

    Article  Google Scholar 

  • 41.

    Giménez Gómez, V. C. et al. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers. 11, 554–564. https://doi.org/10.1111/icad.12299 (2018).

    Article  Google Scholar 

  • 42.

    Emerich, P., Valadao, H., Silva, J. & Tidon, R. High abundance of neotropical drosophilids (Diptera: Drosophilidae) in four cultivated areas of central Brazil. Neotrop. Entomol. 41, 83–88. https://doi.org/10.1007/s13744-011-0004-x (2012).

    Article  PubMed  Google Scholar 

  • 43.

    Furtado, I. S. & Martins, M. B. The impacts of land use intensification on the assembly of drosophilidae (Diptera). Glob. Ecol. Conserv. 16, e00432. https://doi.org/10.1016/j.gecco.2018.e00432 (2018).

    Article  Google Scholar 

  • 44.

    Eo, J., Kim, M.-H., Na, Y.-E., Oh, Y.-J. & Park, S. Abiotic effects on the distributions of major insect species in agricultural fields. Entomol. Res. 47, 160–166. https://doi.org/10.1111/1748-5967.12207 (2017).

    Article  Google Scholar 

  • 45.

    Alignan, J.-F., Debras, J.-F. & Dutoit, T. Effects of ecological restoration on Orthoptera assemblages in a Mediterranean steppe rangeland. J. Insect Conserv. 18, 1073–1085. https://doi.org/10.1007/s10841-014-9717-6 (2014).

    Article  Google Scholar 

  • 46.

    Kuppler, J., Fricke, J., Hemp, C., Steffan-Dewenter, I. & Peters, M. K. Conversion of savannah habitats to small-scale agriculture affects grasshopper communities at Mt. Kilimanjaro, Tanzania. J. Insect Conserv. 19, 509–518. https://doi.org/10.1007/s10841-015-9772-7 (2015).

    Article  Google Scholar 

  • 47.

    Poniatowski, D. & Fartmann, T. The classification of insect communities: Lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur. J. Entomol. 105, 659–671. https://doi.org/10.14411/eje.2008.090 (2008).

    Article  Google Scholar 

  • 48.

    Vieira, L., Nascimento, P. K. S. & Leivas, F. W. T. Habitat association promotes diversity of histerid beetles (Coleoptera: Histeridae) in neotropical ecosystems. Coleopt. Bull. 72, 541–549. https://doi.org/10.1649/0010-065x-72.3.541 (2018).

    Article  Google Scholar 

  • 49.

    Martinez-Falcon, A. P., Zurita, G. A., Ortega-Martinez, I. J. & Moreno, C. E. Populations and assemblages living on the edge: Dung beetles responses to forests-pasture ecotones. PeerJ 6, e6148. https://doi.org/10.7717/peerj.6148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 50.

    da Mata, R. A., McGeoch, M. & Tidon, R. Drosophilid assemblages as a bioindicator system of human disturbance in the Brazilian Savanna. Biodivers. Conserv. 17, 2899–2916. https://doi.org/10.1007/s10531-008-9403-7 (2008).

    Article  Google Scholar 

  • 51.

    Parsons, P. A. Biodiversity conservation under global climatic-change—the insect Drosophila as a biological indicator. Glob. Ecol. Biogeogr. Lett. 1, 77–83. https://doi.org/10.2307/2997493 (1991).

    Article  Google Scholar 

  • 52.

    Popov, S. et al. Phytophagous hoverflies (Diptera: Syrphidae) as indicators of changing landscapes. Community Ecol. 18, 287–294. https://doi.org/10.1556/168.2017.18.3.7 (2017).

    Article  Google Scholar 

  • 53.

    Sommaggio, D. & Burgio, G. The use of Syrphidae as functional bioindicator to compare vineyards with different managements. Bull. Insectol. 67, 147–156 (2014).

    Google Scholar 

  • 54.

    García-Tejero, S., Taboada, Á, Tárrega, R. & Salgado, J. M. Land use changes and ground dwelling beetle conservation in extensive grazing dehesa systems of north-west Spain. Biol. Conserv. 161, 58–66. https://doi.org/10.1016/j.biocon.2013.02.017 (2013).

    Article  Google Scholar 

  • 55.

    Tripathi, G., Ram, S., Sharma, B. M. & Singh, G. Soil faunal biodiversity and nutrient status in silvopastoral systems of Indian desert. Environ. Conserv. 32, 178–188. https://doi.org/10.1017/s0376892905002109 (2005).

    CAS  Article  Google Scholar 

  • 56.

    Brosi, B. J., Daily, G. C. & Ehrlich, P. R. Bee community shifts with landscape context in a tropical countryside. Ecol. Appl. 17, 418–430. https://doi.org/10.1890/06-0029 (2007).

    Article  PubMed  Google Scholar 

  • 57.

    Matos, M. C. B., Sousa-Souto, L., Almeida, R. S. & Teodoro, A. V. Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta: Hymenoptera) according to land-use. Biotropica 45, 73–79. https://doi.org/10.1111/j.1744-7429.2012.00886.x (2013).

    Article  Google Scholar 

  • 58.

    Gonzalez-Moreno, A., Bordera, S., Leirana-Alcocer, J., Delfin-Gonzalez, H. & Ballina-Gomez, H. S. Explaining variations in the diversity of parasitoid assemblages in a biosphere reserve of Mexico: Evidence from vegetation, land management and seasonality. Bull. Entomol. Res. 108, 602–615. https://doi.org/10.1017/S0007485317001134 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Mazon, M. & Bordera, S. Effectiveness of two sampling methods used for collecting Ichneumonidae (Hymenoptera) in the Cabaneros National Park (Spain). Eur. J. Entomol. 105, 879–888. https://doi.org/10.14411/eje.2008.116 (2008).

    Article  Google Scholar 

  • 60.

    Tscharntke, T. et al. Multifunctional shade-tree management in tropical agroforestry landscapes: A review. J. Appl. Ecol. 48, 619–629. https://doi.org/10.1111/j.1365-2664.2010.01939.x (2011).

    Article  Google Scholar 

  • 61.

    Mumme, S., Jochum, M., Brose, U., Haneda, N. F. & Barnes, A. D. Functional diversity and stability of litter-invertebrate communities following land-use change in Sumatra, Indonesia. Biol. Conserv. 191, 750–758. https://doi.org/10.1016/j.biocon.2015.08.033 (2015).

    Article  Google Scholar 

  • 62.

    Norgrove, L. & Beck, J. Biodiversity Function and resilience in tropical agroforestry systems including shifting cultivation. Curr. For. Rep. 2, 62–80. https://doi.org/10.1007/s40725-016-0032-1 (2016).

    Article  Google Scholar 

  • 63.

    Orford, K. A., Murray, P. J., Vaughan, I. P. & Memmott, J. Modest enhancements to conventional grassland diversity improve the provision of pollination services. J. Appl. Ecol. 53, 906–915. https://doi.org/10.1111/1365-2664.12608 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Ruiz-Guerra, B., López-Acosta, J. C., Zaldivar-Riverón, A. & Velázquez-Rosas, N. Braconidae (Hymenoptera: Ichneumonoidea) abundance and richness in four types of land use and preserved rain forest in southern Mexico. Rev. Mexicana Biodivers. 86, 164–171. https://doi.org/10.7550/rmb.43865 (2015).

    Article  Google Scholar 

  • 65.

    Sanabria, C., Lavelle, P. & Fonte, S. J. Ants as indicators of soil-based ecosystem services in agroecosystems of the Colombian Llanos. Appl. Soil. Ecol. 84, 24–30. https://doi.org/10.1016/j.apsoil.2014.07.001 (2014).

    Article  Google Scholar 

  • 66.

    Marinho, C. G. S., Zanetti, R., Delabie, J. H. C., Schlindwein, M. N. & Ramos, L. S. Diversidade de Formigas (Hymenoptera: Formicidae) da Serapilheira em Eucaliptais (Myrtaceae) e Área de Cerrado de Minas Gerais. Neotrop. Entomol. 31, 187–195 (2002).

    Article  Google Scholar 

  • 67.

    Mazon, M., Sanchez-Angarita, D., Diaz, F. A., Gutierrez, N. & Jaimez, R. Entomofauna Associated with agroforestry systems of timber species and Cacao in the Southern Region of the Maracaibo Lake Basin (Merida, Venezuela). Insects. https://doi.org/10.3390/insects9020046 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Riedel, J., Dorn, S. & Mody, K. Assemblage composition of ants (Hymenoptera: Formicidae) affected by tree diversity and density in native timber tree plantations on former tropical pasture. Myrmecol. News 20, 113–127 (2014).

    Google Scholar 

  • 69.

    Lubertazzi, D. & Tschinkel, W. R. Ant community change across a ground vegetation gradient in north Florida’s longleaf pine flatwoods. J. Insect Sci. 3, 1–17. https://doi.org/10.1673/031.003.2101 (2003).

    Article  Google Scholar 

  • 70.

    Yanoviak, S. P. & Kaspari, M. Community structure and the habitat templet: Ants in the tropical forest canopy and litter. Oikos 89, 259–266. https://doi.org/10.1034/j.1600-0706.2000.890206.x (2000).

    Article  Google Scholar 

  • 71.

    Ramirez, M., Herrera, J. & Armbrecht, I. Do ants predating in Colombian pastures and coffee plantations come down from the trees?. Rev. Colomb. Entomol. 36, 106–115 (2010).

    Google Scholar 

  • 72.

    Queiroz, J. M., Almeida, F. S. & Pereira, M. P. D. S. Conservação da biodiversidade e o papel das formigas (Hymenoptera: Formicidae) em agroecossistemas. Floresta e Ambiente 13, 37–45 (2006).

    Google Scholar 

  • 73.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880. https://doi.org/10.1111/ele.12277 (2014).

    Article  PubMed  Google Scholar 

  • 74.

    Bar-Massada, A. & Wood, E. M. The richness-heterogeneity relationship differs between heterogeneity measures within and among habitats. Ecography 37, 528–535. https://doi.org/10.1111/j.1600-0587.2013.00590.x (2014).

    Article  Google Scholar 

  • 75.

    Yang, L., Maron, J. L. & Callaway, R. M. Inhibitory effects of soil biota are ameliorated by high plant diversity. Oecologia 179, 519–525. https://doi.org/10.1007/s00442-015-3351-1 (2015).

    ADS  Article  PubMed  Google Scholar 

  • 76.

    Jacques, G. C., Souza, M. M., Coelho, H. J., Vicente, L. O. & Silveira, L. C. P. Diversity of social wasps (Hymenoptera: Vespidae: Polistinae) in an agricultural environment in Bambui, Minas Gerais, Brazil. Sociobiology 62, 439–445. https://doi.org/10.13102/sociobiology.v62i3.738 (2015).

    Article  Google Scholar 

  • 77.

    Prezoto, F., Santos-Prezoto, H. H., Machado, V. L. L. & Zanuncio, J. C. Prey captured and used in Polistes versicolor (Olivier) (Hymenoptera: Vespidae) nourishment. Neotrop. Entomol. 35, 707–709. https://doi.org/10.1590/s1519-566×2006000500021 (2006).

    Article  PubMed  Google Scholar 

  • 78.

    Korösi, Á, Batáry, P., Orosz, A., Rédei, D. & Báldi, A. Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv. Divers. 5, 57–66. https://doi.org/10.1111/j.1752-4598.2011.00153.x (2012).

    Article  Google Scholar 

  • 79.

    Burdine, J. D., Dominguez Martinez, G. H. & Philpott, S. M. Predictors of leafhopper abundance and richness in a coffee agroecosystem in Chiapas, Mexico. Environ. Entomol. 43, 328–335. https://doi.org/10.1603/EN13251 (2014).

    Article  PubMed  Google Scholar 

  • 80.

    Genung, W. G. & Mead, F. W. Leafhopper populations (Homoptera: Cicadellidae) on five pasture grasses in the Florida Everglades. Fla. Entomol. 52, 165–170 (1969).

    Article  Google Scholar 

  • 81.

    Quisenberry, S. S., Yonke, T. R. & Huggans, J. L. Leafhoppers Associated with Mixed Tall Fescue Pastures in Missouri (Homoptera: Cicadellidae). J. Kansas Entomol. Soc. 52, 421–437 (1979).

    Google Scholar 

  • 82.

    Bhandari, K. B., West, C. P. & Longing, S. D. Communities of canopy-dwelling arthropods in response to diverse forages. Ael. https://doi.org/10.2134/ael2018.07.0037 (2018).

    Article  Google Scholar 

  • 83.

    Wolcott, G. N. An animal census of two pastures and a Meadow in Northern New York. Ecol. Monogr. 7, 1–90 (1937).

    Article  Google Scholar 

  • 84.

    Auad, A. M. et al. Seleção de genótipos de capim-elefante quanto à resistência à cigarrinha-das-pastagens. Pesqui. Agropecu. Bras. 42, 1077–1081 (2007).

    Article  Google Scholar 

  • 85.

    Valerio, J. R. & Nakano, O. Damage caused by the pasture spittlebug Zulia entreriana on production and quality of Brachiaria decumbens. Pesqui. Agropecu. Bras. 23, 447–453 (1988).

    Google Scholar 

  • 86.

    Holzinger, W. E., Emeljanov, A. F. & Kammerlander, I. In Zikaden—Leafhoppers, Planthoppers and Cicadas (Insecta: Hemiptera: Auchenorrhyncha) Vol. 4 Denisia (ed. Holzinger, W.E.) 113–138 (Biologiezentrum, Linz, 2002).

  • 87.

    Urban, J. M. & Cryan, J. R. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Mol. Phylogenet. Evol. 42, 556–572. https://doi.org/10.1016/j.ympev.2006.08.009 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 88.

    Klimes, P., Borovanska, M., Plowman, N. S. & Leponce, M. How common is trophobiosis with hoppers (Hemiptera: Auchenorrhyncha) inside ant nests (Hymenoptera: Formicidae)? Novel interactions from New Guinea and a worldwide overview. Myrmecol. News 26, 31–45 (2018).

    Google Scholar 

  • 89.

    Bachtold, A., Alves-Silva, E., Kaminski, L. A. & Del-Claro, K. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Die Naturwissenschaften 101, 913–919. https://doi.org/10.1007/s00114-014-1232-9 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 90.

    Kaminski, L. A., Freitas, A. V. & Oliveira, P. S. Interaction between Mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334. https://doi.org/10.1086/655427 (2010).

    Article  PubMed  Google Scholar 

  • 91.

    Kaminski, L. A. & Rodrigues, D. Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol. Entomol. 36, 208–214. https://doi.org/10.1111/j.1365-3032.2011.00785.x (2011).

    Article  Google Scholar 

  • 92.

    Mota, L. L. & Oliveira, P. S. Myrmecophilous butterflies utilise ant-treehopper associations as visual cues for oviposition. Ecol. Entomol. 41, 338–343. https://doi.org/10.1111/een.12302 (2016).

    Article  Google Scholar 

  • 93.

    Sendoya, S. F. & Oliveira, P. S. Ant-caterpillar antagonism at the community level: Interhabitat variation of tritrophic interactions in a neotropical savanna. J. Anim. Ecol. 84, 442–452. https://doi.org/10.1111/1365-2656.12286 (2015).

    Article  PubMed  Google Scholar 

  • 94.

    Townes, H. A light-weight Malaise trap. Entomol. News 83, 239–247 (1972).

    Google Scholar 

  • 95.

    Rafael, J. A., Melo, G. A. R., Carvalho, C. J. B. D., Casari, S. A. & Constantino, R. Insetos do Brasil: Diversidade e Taxonomia (Holos Editora, Ribeirão Preto, 2012).

    Google Scholar 

  • 96.

    Triplehorn, C. A. & Johnson, N. F. Estudo dos Insetos 2nd edn, 757 (Cengage Learning, Boston, 2015).

    Google Scholar 

  • 97.

    Fujihara, R. T., Forti, L. C., Almeida, M. C. D. & Baldin, E. L. L. Insetos de Importância Econômica: Guia Ilustrado para Identificação de Famílias. 391 (FEPAF, 2011).

  • 98.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 99.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).

    Article  Google Scholar 

  • 100.

    EstimateS: statistical estimation of species richness and shared species from samples. (University of Connecticut, Connecticut, 2013).

  • 101.

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication 117 (The University of Illinois Press, Champaign, 1949).

    Google Scholar 

  • 102.

    Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 103.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x (1993).

    Article  Google Scholar 

  • 104.

    PRIMER v7 (PRIMER-E, Plymouth, 2015).


  • Source: Ecology - nature.com

    Iron is not everything: unexpected complex metabolic responses between iron-cycling microorganisms

    Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies