in

Differential processing of dissolved and particulate organic matter by deep-sea sponges and their microbial symbionts

  • 1.

    Thomson, W. On Holtenia, a genus of vitreous sponges. Proc. R. Soc. Lond. 18(114–122), 32–35 (1869).

    Google Scholar 

  • 2.

    Carter, H. J. Descriptions and figures of deep-sea sponges and their spicules from the Atlantic Ocean dredged up on board HMS Porcupine chiefly in 1869. Ann. Mag. Nat. Hist. 4(14), 207–221 (1874).

    Article  Google Scholar 

  • 3.

    Bett, B. J. & Rice, A. L. The influence of hexactinellid sponge (Pheronema carpenteri) spicules on the patchy distribution of macrobenthos in the porcupine seabight (bathyal ne atlantic). Ophelia 36(3), 217–226 (1992).

    Article  Google Scholar 

  • 4.

    Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31(1), 21–50 (2010).

    ADS  Article  Google Scholar 

  • 5.

    Maldonado, M., et al. Sponge grounds as key marine habitats: a synthetic review of types, structure, functional roles, and conservation concerns. In: Marine Animal Forests (eds Rossi, S., Bramanti, L., Gori, A., Orejas Saco del Valle, C.) (Springer, Berlin, 2016).

    Google Scholar 

  • 6.

    Klitgaard, A. B. & Tendal, O. S. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61(1), 57–98 (2004).

    ADS  Article  Google Scholar 

  • 7.

    van Soest, R. W. M. et al. Sponge diversity and community composition in Irish bathyal coral reefs. Contrib. Zool. 76(2), 121–142 (2007).

    Article  Google Scholar 

  • 8.

    Meyer, H. K., Roberts, E. M., Rapp, H. T. & Davies, A. J. Spatial patterns of arctic sponge ground fauna and demersal fish are detectable in autonomous underwater vehicle (AUV) imagery. Deep Sea Res. Part I Oceanogr. Res. Pap. 153, 103137 (2019).

    Article  Google Scholar 

  • 9.

    Beazley, L. et al. Predicted distribution of the glass sponge Vazella pourtalesii on the Scotian Shelf and its persistence in the face of climatic variability. PLoS ONE 13(10), e0205505 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Hawkes, N. et al. Glass sponge grounds on the Scotian Shelf and their associated biodiversity. Mar. Ecol. Prog. Ser. 614, 91–109 (2019).

    ADS  Article  Google Scholar 

  • 11.

    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).

    ADS  Article  Google Scholar 

  • 12.

    Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2(37), 1–12 (2015).

    Google Scholar 

  • 13.

    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (Porifera, Demospongiae) at the Faroe Islands, northeastern Atlantic. Sarsia 80(1), 1–22 (1995).

    Article  Google Scholar 

  • 14.

    Kazanidis, G., Henry, L. A., Roberts, J. M. & Witte, U. F. Biodiversity of Spongosorites coralliophaga (Stephens, 1915) on coral rubble at two contrasting cold-water coral reef settings. Coral Reefs 35(1), 193–208 (2016).

    ADS  Article  Google Scholar 

  • 15.

    Freese, J. L. & Wing, B. L. Juvenile red rockfish, Sebastes sp., associations with sponges in the Gulf of Alaska. Mar. Fish. Rev. 65(3), 38–42 (2003).

    Google Scholar 

  • 16.

    Kenchington, E., Power, D. & Koen-Alonso, M. Associations of demersal fish with sponge grounds on the continental slopes of the northwest Atlantic. Mar. Ecol. Prog. Ser. 477, 217–230 (2013).

    ADS  Article  Google Scholar 

  • 17.

    Pile, A. J. & Young, C. M. The natural diet of a hexactinellid sponge: benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Res. Part I Oceanogr. Res. Pap. 53(7), 1148–1156 (2006).

    ADS  Article  Google Scholar 

  • 18.

    Kahn, A. S., Yahel, G., Chu, J. W., Tunnicliffe, V. & Leys, S. P. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60(1), 78–88 (2015).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Vad, J. et al. Potential impacts of offshore oil and gas activities on deep-sea sponges and the habitats they form. Adv. Mar. Biol. 79, 33–60 (2018).

    PubMed  Article  Google Scholar 

  • 20.

    Kutti, T. et al. Metabolic responses of the deep-water sponge Geodia barretti to suspended bottom sediment, simulated mine tailings and drill cuttings. J. Exp. Mar. Biol. Ecol. 473, 64–72 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Edge, K. J. et al. Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti. Environ. Pollut. 212, 525–534 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Kazanidis, G. et al. Distribution of deep-sea sponge aggregations in an area of multisectoral activities and changing oceanic conditions. Front. Mar. Sci. 6, 163 (2019).

    Article  Google Scholar 

  • 23.

    Vieira, R. P. et al. Deep-sea sponge aggregations (Pheronema carpenteri) in the Porcupine Seabight (NE Atlantic) potentially degraded by demersal fishing. Prog. Oceanogr. 183, 102189 (2020).

    Article  Google Scholar 

  • 24.

    Hentschel, U. et al. Microbial diversity of marine sponges. In Sponges (Porifera) (ed. Müller, W. E. G.) 59–88 (Springer, Berlin, 2003).

    Google Scholar 

  • 25.

    Taylor, M. W., Hill, R. T., Piel, J., Thacker, R. W. & Hentschel, U. Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J. 1(3), 187 (2007).

    PubMed  Article  Google Scholar 

  • 26.

    Reiswig, H. M. Bacteria as food for temperate-water marine sponges. Can. J. Zool. 53(5), 582–589 (1975).

    Article  Google Scholar 

  • 27.

    Vacelet, J. & Boury-Esnault, N. Carnivorous sponges. Nature 373(6512), 333 (1995).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Bart, M.C. et al.Dissolved organic carbon (DOC) is essential to balance the metabolic demands of North-Atlantic deep-sea sponges. https://doi.org/10.1101/2020.09.21.305086 (2020).

  • 29.

    Rix, L. et al. Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci. Rep. 6(1), 1–11 (2016).

    Article  CAS  Google Scholar 

  • 30.

    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) (Springer, Berlin, 2017).

    Google Scholar 

  • 31.

    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22(4), 202–211 (2009).

    Article  Google Scholar 

  • 32.

    Wendt, D. E. & Johnson, C. H. Using latent effects to determine the ecological importance of dissolved organic matter to marine invertebrates. Integr. Comp. Biol. 46(5), 634–642 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Azam, F. et al. The ecological role of water-column microbes in the sea. Mari. Ecol. Prog. Ser. 10, 257–263 (1983).

    ADS  Article  Google Scholar 

  • 34.

    Yahel, G., Sharp, J. H., Marie, D., Häse, C. & Genin, A. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: Bulk DOC is the major source for carbon. Limnol. Oceanogr. 48(1), 141–149 (2003).

    ADS  Article  Google Scholar 

  • 35.

    de Goeij, J. M., van den Berg, H., van Oostveen, M. M., Epping, E. H. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).

    ADS  Article  CAS  Google Scholar 

  • 36.

    Mueller, B. et al. Natural diet of coral-excavating sponges consists mainly of dissolved organic carbon (DOC). PLoS ONE 9(2), e90152 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 37.

    Reiswig, H. M. Partial carbon and energy budgets of the bacteriosponge Verohgia fistularis (Porifera: Demospongiae) in Barbados. Mar. Ecol. 2(4), 273–293 (1981).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Morganti, T., Coma, R., Yahel, G. & Ribes, M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol. Oceanogr. 62(5), 1963–1983 (2017).

    ADS  CAS  Article  Google Scholar 

  • 39.

    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14(5), 1224–1239 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Hoer, D. R., Gibson, P. J., Tommerdahl, J. P., Lindquist, N. L. & Martens, C. S. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol. Oceanogr. 63(1), 337–351 (2018).

    ADS  CAS  Article  Google Scholar 

  • 42.

    de Goeij, J. M., Moodley, L., Houtekamer, M., Carballeira, N. M. & Van Duyl, F. C. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: Evidence for DOM-feeding. Limnol. Oceanogr. 53(4), 1376–1386 (2008).

    ADS  Article  Google Scholar 

  • 43.

    de Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342(6154), 108–110 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 44.

    Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct. Ecol. 31(3), 778–789 (2017).

    Article  Google Scholar 

  • 45.

    de Goeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212(23), 3892–3900 (2009).

    PubMed  Article  Google Scholar 

  • 46.

    Achlatis, M. et al. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc. R. Soc. B 286(1916), 20192153 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58(2), 305–332 (2002).

    CAS  Article  Google Scholar 

  • 48.

    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23(9), 518–528 (2008).

    PubMed  Article  Google Scholar 

  • 49.

    Gantt, S. E. et al. Testing the relationship between microbiome composition and flux of carbon and nutrients in Caribbean coral reef sponges. Microbiome 7(1), 124 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Maldonado, M., Ribes, M. & van Duyl, F. C. Nutrient fluxes through sponges: biology, budgets, and ecological implications. In Advances in Marine Biology (eds Becerro, M. A. et al.) 113–182 (Academic Press, Cambridge, 2012).

    Google Scholar 

  • 51.

    van Duyl, F. C., Hegeman, J., Hoogstraten, A. & Maier, C. Dissolved carbon fixation by sponge–microbe consortia of deep water coral mounds in the northeastern Atlantic Ocean. Mar. Ecol. Prog. Ser. 358, 137–150 (2008).

    ADS  Article  CAS  Google Scholar 

  • 52.

    van Duyl, F. C. et al. Dark CO2 fixation into phospholipid-derived fatty acids by the cold-water coral associated sponge Hymedesmia (Stylopus) coriacea (Tisler Reef, NE Skagerrak). Mar. Biol. Re. 16(1), 1–17 (2020).

    Article  Google Scholar 

  • 53.

    Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11(9), 2228–2243 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Radax, R. et al. Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ. Microbiol. 14(5), 1308–1324 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8(2), e00413-e417 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Kazanidis, G., van Oevelen, D., Veuger, B. & Witte, U. F. Unravelling the versatile feeding and metabolic strategies of the cold-water ecosystem engineer Spongosorites coralliophaga (Stephens, 1915). Deep Sea Res. Part I Oceanogr. Res. Pap. 141, 71–82 (2018).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Corredor, J. E., Wilkinson, C. R., Vicente, V. P., Morell, J. M. & Otero, E. Nitrate release by Caribbean reef sponges 1, 2. Limnol. Oceanogr. 33(1), 114–120 (1988).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T. & Bannister, R. J. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol. Oceanogr. 63(1), 187–202 (2018).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Phillips, N. W. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 35(3), 283–298 (1984).

    Google Scholar 

  • 60.

    Haas, A. F. & Wild, C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10(2), 131–138 (2010).

    Article  Google Scholar 

  • 61.

    Nelson, C. E. et al. Coral and macroalgal exudates vary in neutral sugar composition and differentially enrich reef bacterioplankton lineages. ISME J. 7(5), 962 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    van Oevelen, D. et al. The cold-water coral community as hotspot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54(6), 1829–1844 (2009).

    ADS  Article  Google Scholar 

  • 63.

    Vrede, K., Heldal, M., Norland, S. & Bratbak, G. Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Environ. Microbiol. 68(6), 2965–2971 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Hansell, D. A. & Carlson, C. A. Marine dissolved organic matter and the carbon cycle. Oceanography 14(4), 41–49 (2001).

    Article  Google Scholar 

  • 65.

    Djerassi, C. & Lam, W. K. Phospholipid studies of marine organisms. Part 25. Sponge phospholipids. Accounts Chem. Res. 24(3), 69–75 (1991).

    CAS  Article  Google Scholar 

  • 66.

    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9(10), e109486 https://doi.org/10.1371/journal.pone.0109486 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 67.

    Bayer, K. et al. Microbial strategies for survival in the glass sponge Vazella pourtalesii. BioRxiv https://doi.org/10.1101/2020.05.28.122663 (2020).

    Article  Google Scholar 

  • 68.

    Fuller, S. D. Diversity of marine sponges in the Northwest Atlantic. PhD dissertation, Dalhousie University, Halifax (2011).

  • 69.

    Tjensvoll, I., Kutti, T., Fosså, J. H. & Bannister, R. J. Rapid respiratory responses of the deep-water sponge Geodia barretti exposed to suspended sediments. Aquat. Biol. 19(1), 65–73 (2013).

    Article  Google Scholar 

  • 70.

    Guillard, R. R. Culture of phytoplankton for feeding marine invertebrates. in Culture of Marine Invertebrate Animals. (eds Smith, W. L., Chanley, M. H.) 29–60. (Springer, Boston, MA, 1975).

    Google Scholar 

  • 71.

    Miller, J.H. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory. (Cold Spring Harbor, NY 1972).

  • 72.

    Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?. PeerJ 3, e820 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 73.

    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37(8), 911–917 (1959).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Boschker, H. T. S. Linking microbial community structure and functioning: stable istope (13C) labeling in combination with PLFA analysis. in Molecular Microbial Ecology Manual, 2nd edition (eds. Kowalchuk, G. A., de Bruijn, F. J., Head, I. M., Akkermans, A. D. L., van Elsas, J. D.) 1673–1688 (Kluwer, Dordrecht, The Netherlands, 2004).

    Google Scholar 

  • 75.

    de Kluijver, A. Fatty acid analysis sponges. protocols.io. https://doi.org/10.17504/protocols.io.bhnpj5dn (2020).

  • 76.

    Soetaert, K., Provoost, P., & van Rijswijk, P. RLims: R functions for Lab Analysis using GC-FID and GC-c-IRMS, NIOZ Yerseke, v1.03 (2015).

  • 77.

    Clarke, K. R. & Gorley, R. N. PRIMER v6: User Manual (Tutorial Plymouth, United Kingdom, 2006).

    Google Scholar 

  • 78.

    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E. Plymouth, UK, 2008).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT.nano receives LEED Platinum certification

    Benthic ecosystem cascade effects in Antarctica using Bayesian network inference