in

Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process

  • 1.

    Chang, L. L. Y. Carbonates. In Non-silicates: Sulphates, carbonates, phosphates, halides 5B, 95–288 (The Geological Society, New York, 1998).

  • 2.

    Hazen, R. M., Downs, R. T., Jones, A. P. & Kah, L. Carbon mineralogy and crystal chemistry. Rev. Miner. Geochem. 75, 7–46 (2013).

    CAS  Article  Google Scholar 

  • 3.

    Martin, J. B. Carbonate minerals in the global carbon cycle. Chem. Geol. 449, 58–72 (2017).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Curti, E. Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 14, 433–445 (1999).

    CAS  Article  Google Scholar 

  • 5.

    Stipp, S. L. S., Christensen, J. T., Lakshtanov, L. Z., Baker, J. A. & Waight, T. E. Rare earth element (REE) incorporation in natural calcite: upper limits for actinide uptake in a secondary phase. Radiochim. Acta 94, 523–528 (2006).

    CAS  Article  Google Scholar 

  • 6.

    Olsson, J., Stipp, S. L. S., Makovicky, E. & Gislason, S. R. Metal scavenging by calcium carbonate at the Eyjafjallajökull volcano: a carbon capture and storage analogue. Chem. Geol. 384, 135–148 (2014).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Drake, H. et al. Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ. Sci. Technol. 52, 493–502 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 8.

    Chi, J., Zhang, W., Wang, L. & Putnis, C. V. Direct observations of the occlusion of soil organic matter within calcite. Environ. Sci. Technol. 53, 8097–8104 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 9.

    Ware, J. R., Smith, S. V. & Reaka-Kudla, M. L. Coral reefs: sources or sinks of atmospheric CO2?. Coral Reefs 11, 127–130 (1992).

    ADS  Article  Google Scholar 

  • 10.

    Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. USA 105, 17295–17300 (2008).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Kunhikrishnan, A. et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 139, 1–71 (2016).

    Article  Google Scholar 

  • 12.

    Holland, J. E. et al. Liming impacts on soils, crops and biodiversity in the UK: a review. Sci. Total Environ. 610–611, 316–332 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 13.

    McBride, M. B. Reactions controlling heavy metal solubility in soils. Advances in Soil Science 10th edn. (Springer, New York, 1989).

    Google Scholar 

  • 14.

    Lee, S. H., Lee, J. S., Jeong Choi, Y. & Kim, J. G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 77, 1069–1075 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 15.

    Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: a review. Biofouling 29, 715–733 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Kumari, D. et al. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Gat, D., Ronen, Z. & Tsesarsky, M. Long-term sustainability of microbial-induced CaCO3 precipitation in aqueous media. Chemosphere 184, 524–531 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 18.

    Guo, J. H. et al. Significant acidification in major chinese croplands. Science 327, 1008–1010 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Rice, K. C. & Herman, J. S. Acidification of earth: an assessment across mechanisms and scales. Appl. Geochem. 27, 1–14 (2012).

    CAS  Article  Google Scholar 

  • 20.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed  Article  Google Scholar 

  • 21.

    Feely, R. A. et al. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 23.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Sulpis, O. et al. Current CaCO3 dissolution at the seafloor caused by anthropogenic CO2. Proc. Natl. Acad. Sci. USA. 115, 11700–11705 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25.

    Kopáček, J. et al. Climate change increasing calcium and magnesium leaching from granitic alpine catchments. Environ. Sci. Technol. 51, 159–166 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 26.

    Weyhenmeyer, G. A. et al. Widespread diminishing anthropogenic effects on calcium in freshwaters. Sci. Rep. 9, 1–10 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Kirsch, K., Navarre-Sitchler, A. K., Wunsch, A. & McCray, J. E. Metal release from sandstones under experimentally and numerically simulated CO2 leakage conditions. Environ. Sci. Technol. 48, 1436–1442 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Wunsch, A., Navarre-Sitchler, A. K., Moore, J. & McCray, J. E. Metal release from limestones at high partial-pressures of CO2. Chem. Geol. 363, 40–55 (2014).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Palmer, M. R. & Edmond, J. M. Uranium in river water. Geochim. Cosmochim. Acta 57, 4947–4955 (1993).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Edmond, J. M. Himalayan tectonics, weathering processes, and the strontium isotope record in marine limestones. Science 258, 1594–1597 (1992).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 31.

    Quezada-Hinojosa, R. P., Matera, V., Adatte, T., Rambeau, C. & Föllmi, K. B. Cadmium distribution in soils covering Jurassic oolitic limestone with high Cd contents in the Swiss Jura. Geoderma 150, 287–301 (2009).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Rambeau, C. M. C. et al. High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France. Environ. Earth Sci. 61, 1573–1585 (2010).

    CAS  Article  Google Scholar 

  • 33.

    Wen, Y., Li, W., Yang, Z., Zhang, Q. & Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 245, 125620 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 34.

    Qu, S., Wu, W., Nel, W. & Ji, J. The behavior of metals/metalloids during natural weathering: a systematic study of the mono-lithological watersheds in the upper Pearl River Basin, China. Sci. Total Environ. 708, 134572 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Xia, X. et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock. Chemosphere 254, 126799 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 36.

    Morse, J. W. The kinetics of calcium carbonate dissolution and precipitation in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 191–225 (1983).

    Google Scholar 

  • 37.

    Morse, J. W. & Arvidson, R. S. The dissolution kinetics of major sedimentary carbonate minerals. Earth Sci. Rev. 58, 51–84 (2002).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Morse, J. W., Arvidson, R. S. & Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Arvidson, R. S. et al. Magnesium inhibition of calcite dissolution kinetics. Geochim. Cosmochim. Acta 70, 583–594 (2006).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Harstad, A. O. & Stipp, S. L. S. Calcite dissolution: Effects of trace cations naturally present in Iceland spar calcites. Geochim. Cosmochim. Acta 71, 56–70 (2007).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Mackenzie, F. T. et al. Magnesian calcites: low-temperature occurrence, solubility and solid-solution behavior in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 97–144 (1983).

    Google Scholar 

  • 42.

    Bischoff, W. D., Mackenzie, F. T. & Bishop, F. C. Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim. Cosmochim. Acta 51, 1413–1423 (1987).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Busenberg, E. & Niel Plummer, L. Thermodynamics of magnesian calcite solid-solutions at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 53, 1189–1208 (1989).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Davis, K. J., Dove, P. M. & De Yoreo, J. J. The role of Mg2+ as an impurity in calcite growth. Science 290, 1134–1137 (2000).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Zhang, X., Wu, S. & Chen, F. Nano precipitates formed during the dissolution of calcite incorporated with Cu and Mn. Minerals 8, 484 (2018).

    CAS  Article  Google Scholar 

  • 46.

    Haese, R. R., Smith, J., Weber, R. & Trafford, J. High-magnesium calcite dissolution in tropical continental shelf sediments controlled by ocean acidification. Environ. Sci. Technol. 48, 8522–8528 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Rauls, M. et al. Influence of impurities on crystallization kinetics – a case study on ammonium sulfate. J. Cryst. Growth 213, 116–128 (2000).

    ADS  CAS  Article  Google Scholar 

  • 48.

    Latta, D. E., Pearce, C. I., Rosso, K. M., Kemner, K. M. & Boyanov, M. I. Reaction of UVI with titanium-substituted magnetite: influence of Ti on UIV speciation. Environ. Sci. Technol. 47, 4121–4130 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    World Data Centre for Greenhouse Gases (WDCGG). https://gaw.kishou.go.jp.

  • 50.

    RRUFFa. https://rruff.info/repository/sample_child_record_powder/by_minerals/Smithsonite__R040035-1__Powder__DIF_File__3114.txt.

  • 51.

    RRUFFb. https://rruff.info/repository/sample_child_record_powder/by_minerals/Aragonite__R080142-9__Powder__DIF_File__11841.txt.

  • 52.

    RRUFFc. https://rruff.info/repository/sample_child_record_powder/by_minerals/Calcite__R050130-1__Powder__DIF_File__4388.txt.

  • 53.

    Reeder, R. J. Crystal chemistry of the rhombohedral carbonates in carbonates: mineralogy and chemistry. Rev. Miner. Geochem. 11, 1–47 (1983).

    CAS  Google Scholar 

  • 54.

    Chang, L. L. Y. & Brice, W. R. Subsolidus phase relations in the system calcium carbonate-cadmium carbonate. Am. Miner. 56, 338–341 (1971).

    Google Scholar 

  • 55.

    Lorens, R. B. Sr. Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45, 553–561 (1981).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Stipp, S. L., Hochella, M. F., Parks, G. A. & Leckie, J. O. Cd2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: Interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim. Cosmochim. Acta 56, 1941–1954 (1992).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Reeder, R. J. Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochim. Cosmochim. Acta 60, 1543–1552 (1996).

    ADS  CAS  Article  Google Scholar 

  • 58.

    Tesoriero, A. J. & Pankow, J. F. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochim. Cosmochim. Acta 60, 1053–1063 (1996).

    ADS  CAS  Article  Google Scholar 

  • 59.

    Prieto, M., Cubillas, P. & Fernández-Gonzalez, Á. Uptake of dissolved Cd by biogenic and abiogenic aragonite: a comparison with sorption onto calcite. Geochim. Cosmochim. Acta 67, 3859–3869 (2003).

    ADS  CAS  Article  Google Scholar 

  • 60.

    Horner, T. J., Rickaby, R. E. M. & Henderson, G. M. Isotopic fractionation of cadmium into calcite. Earth Planet. Sci. Lett. 312, 243–253 (2011).

    ADS  CAS  Article  Google Scholar 

  • 61.

    Moureaux, C. et al. Effects of field contamination by metals (Cd, Cu, Pb, Zn) on biometry and mechanics of echinoderm ossicles. Aquat. Toxicol. 105, 698–707 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Xu, M. et al. Heterogeneous growth of cadmium and cobalt carbonate phases at the (1014) calcite surface. Chem. Geol. 397, 24–36 (2015).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Lamble, G. M., Reeder, R. J. & Northrup, P. A. Characterization of heavy metal incorporation in calcite by XAFS spectroscopy. J. Phys. IV 7, 793–797 (1997).

    CAS  Google Scholar 

  • 64.

    Reeder, R. J., Lamble, G. M. & Northrup, P. A. XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+ and Ba2+ trace elements in calcite. Am. Miner. 84, 1049–1060 (1999).

    ADS  CAS  Article  Google Scholar 

  • 65.

    Cheng, L., Sturchio, N. C. & Bedzyk, M. J. Local structure of incorporated at the calcite surface: an X-ray standing wave and SEXAFS study. Phys. Rev. B Condens. Matter Mater. Phys. 61, 4877–4883 (2000).

    ADS  CAS  Article  Google Scholar 

  • 66.

    Katsikopoulos, D., Fernández-González, Á, Prieto, A. C. & Prieto, M. Co-crystallization of Co(II) with calcite: implications for the mobility of cobalt in aqueous environments. Chem. Geol. 254, 87–100 (2008).

    ADS  CAS  Article  Google Scholar 

  • 67.

    González-López, J. et al. Cobalt incorporation in calcite: thermochemistry of (Ca, Co)CO3 solid solutions from density functional theory simulations. Geochim. Cosmochim. Acta 142, 205–216 (2014).

    ADS  Article  CAS  Google Scholar 

  • 68.

    González-López, J., Fernández-González, Á & Jiménez, A. Precipitation behaviour in the system Ca2+-Co2+-CO32+-H2O at ambient conditions: amorphous phases and CaCO3 polymorphs. Chem. Geol. 482, 91–100 (2018).

    ADS  Article  CAS  Google Scholar 

  • 69.

    De Giudici, G. et al. Coordination environment of Zn in foraminifera Elphidium aculeatum and Quinqueloculina seminula shells from a polluted site. Chem. Geol. 477, 100–111 (2018).  

    ADS  Article  CAS  Google Scholar 

  • 70.

    Cheng, L. et al. High-resolution structural study of zinc ion incorporation at the calcite cleavage surface. Surf. Sci. 415, 976–982 (1998).

    Article  Google Scholar 

  • 71.

    Elzinga, E. & Reeder, R. X-ray absorption spectroscopy study of Cu2+ and Zn2+ adsorption complexes at the calcite surface: implications for site-specific metal incorporation preferences during calcite crystal growth. Geochim. Cosmochim. Acta 66, 3943–3954 (2002).  

    ADS  CAS  Article  Google Scholar 

  • 72.

    Elzinga, E. J., Rouff, A. A. & Reeder, R. J. The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: an X-ray absorption spectroscopy study. Geochim. Cosmochim. Acta 70, 2715–2725 (2006).  

    ADS  CAS  Article  Google Scholar 

  • 73.

    Menadakis, M., Maroulis, G. & Koutsoukos, P. G. A quantum chemical study of doped CaCO3 (calcite). Comput. Mater. Sci. 38, 522–525 (2007).  

    CAS  Article  Google Scholar 

  • 74.

    Liu, X., Lu, X., Liu, X. & Zhou, H. Atomistic simulation on mixing thermodynamics of calcite-smithsonite solid solutions. Am. Miner. 100, 172–180 (2015).

    ADS  Article  Google Scholar 

  • 75.

    van Dijk, I., de Nooijer, L. J., Wolthers, M. & Reichart, G. J. Impacts of pH and [CO32−] on the incorporation of Zn in foraminiferal calcite. Geochim. Cosmochim. Acta 197, 263–277 (2017).

    ADS  Article  CAS  Google Scholar 

  • 76.

    Hoffmann, U. & Stipp, S. L. S. The behavior of Ni2+ on calcite surfaces. Geochim. Cosmochim. Acta 65, 4131–4139 (2001).

    ADS  CAS  Article  Google Scholar 

  • 77.

    Lakshtanov, L. Z. & Stipp, S. L. S. Experimental study of nickel(II) interaction with calcite: adsorption and coprecipitation. Geochim. Cosmochim. Acta 71, 3686–3697 (2007).  

    ADS  CAS  Article  Google Scholar 

  • 78.

    Munsel, D. et al. Heavy metal incorporation in foraminiferal calcite: results from multi-element enrichment culture experiments with Ammonia tepida. Biogeosciences 7, 2339–2350 (2010).

    ADS  CAS  Article  Google Scholar 

  • 79.

    Andersson, M. P., Sakuma, H. & Stipp, S. L. S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory. Langmuir 30, 6129–6133 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 80.

    Reeder, R. J., Nugent, M., Lamble, G. M., Tait, C. D. & Morris, D. E. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638–644 (2000).

    ADS  CAS  Article  Google Scholar 

  • 81.

    Reeder, R. J. et al. Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim. Cosmochim. Acta 65, 3491–3503 (2001).  

    ADS  CAS  Article  Google Scholar 

  • 82.

    Chen, X., Romaniello, S. J., Herrmann, A. D., Wasylenki, L. E. & Anbar, A. D. Uranium isotope fractionation during coprecipitation with aragonite and calcite. Geochim. Cosmochim. Acta 188, 189–207 (2016).

    ADS  CAS  Article  Google Scholar 

  • 83.

    Niu, Z. et al. Spectroscopic studies on U(VI) incorporation into CaCO3: effects of aging time and U(VI) concentration. Chemosphere 220, 1100–1107 (2019).

    ADS  CAS  Article  Google Scholar 

  • 84.

    Kelly, S. D. et al. Uranyl incorporation in natural calcite. Environ. Sci. Technol. 37, 1284–1287 (2003).

    ADS  CAS  Article  Google Scholar 

  • 85.

    Reeder, R. J. et al. Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim. Cosmochim. Acta 68, 4799–4808 (2004).

    ADS  CAS  Article  Google Scholar 

  • 86.

    Wang, Z., Zachara, J. M., Mckinley, J. P. & Smith, S. C. Cryogenic laser induced U(VI) fluorescence studies of a U(VI) substituted natural calcite: implications to U(VI) speciation in contaminated hanford sediments. Environ. Sci. Technol. 39, 2651–2659 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 87.

    Kelly, S. D., Rasbury, E. T., Chattopadhyay, S., Kropf, A. J. & Kemner, K. M. Evidence of a stable uranyl site in ancient organic-rich calcite. Environ. Sci. Technol. 40, 2262–2268 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 88.

    Arai, Y., Marcus, M. A., Tamura, N., Davis, J. A. & Zachara, J. M. Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ. Sci. Technol. 41, 4633–4639 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 89.

    Keul, N. et al. Incorporation of uranium in benthic foraminiferal calcite reflects seawater carbonate ion concentration. Geochem. Geophys. Geosyst. 14, 102–111 (2013).

    ADS  CAS  Article  Google Scholar 

  • 90.

    Balboni, E., Morrison, J. M., Wang, Z., Engelhard, M. H. & Burns, P. C. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution. Geochim. Cosmochim. Acta 151, 133–149 (2015).

    ADS  CAS  Article  Google Scholar 

  • 91.

    Smith, K. F. et al. U(VI) behaviour in hyperalkaline calcite systems. Geochim. Cosmochim. Acta 148, 343–359 (2015).

    ADS  CAS  Article  Google Scholar 

  • 92.

    Walker, S. M. & Becker, U. Uranyl(VI) and neptunyl(V) incorporation in carbonate and sulfate minerals: insight from first-principles. Geochim. Cosmochim. Acta 161, 19–35 (2015).

    ADS  CAS  Article  Google Scholar 

  • 93.

    Lee, Y. J., Reeder, R. J., Wenskus, R. W. & Elzinga, E. J. Structural relaxation in the MnCO3–CaCO3 solid solution: a Mn K-edge EXAFS study. Phys. Chem. Miner. 29, 585–594 (2002).

    ADS  CAS  Article  Google Scholar 

  • 94.

    Rouff, A. A., Elzinga, E. J., Reeder, R. J. & Fisher, N. S. X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-Sphere adsorption complexes and precipitates at the calcite−water interface. Environ. Sci. Technol. 38, 1700–1707 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 95.

    Kerisit, S. N. & Prange, M. P. Ab initio molecular dynamics simulation of divalent metal cation incorporation in calcite: implications for interpreting X-ray absorption spectroscopy data. ACS Earth Spectr. Chem. 3, 2582 (2019).

    CAS  Article  Google Scholar 

  • 96.

    Elzinga, E. J. et al. EXAFS study of rare-earth element coordination in calcite. Geochim. Cosmochim. Acta 66, 2875–2885 (2002).

    ADS  CAS  Article  Google Scholar 

  • 97.

    Heberling, F., Denecke, M. A. & Bosbach, D. Neptunium(V) coprecipitation with calcite. Environ. Sci. Technol. 42, 471–476 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 98.

    Sturchio, N. C., Antonio, M. R., Soderholm, L., Sutton, S. R. & Brannon, J. C. Tetravalent uranium in calcite. Science 281, 971–973 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 99.

    Stumpf, T., Marques Fernandes, M., Walther, C., Dardenne, K. & Fanghänel, T. Structural characterization of Am incorporated into calcite: A TRLFS and EXAFS study. J. Colloid Interface Sci. 302, 240–245 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 100.

    Podder, J. et al. Iodate in calcite and vaterite: insights from synchrotron X-ray absorption spectroscopy and first-principles calculations. Geochim. Cosmochim. Acta 198, 218–228 (2017).

    ADS  CAS  Article  Google Scholar 

  • 101.

    Saslow, S. A. et al. Chromate effect on iodate incorporation into calcite. ACS Earth Spectr. Chem. 3, 1624–1630 (2019).

    CAS  Article  Google Scholar 

  • 102.

    Tang, Y., Elzinga, E. J., Jae Lee, Y. & Reeder, R. J. Coprecipitation of chromate with calcite: batch experiments and X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 71, 1480–1493 (2007).

    ADS  CAS  Article  Google Scholar 

  • 103.

    Aurelio, G. et al. Structural study of selenium(IV) substitutions in calcite. Chem. Geol270, 249–256 (2010).

    ADS  CAS  Article  Google Scholar 

  • 104.

    Bardelli, F. et al. Arsenic uptake by natural calcite: an XAS study. Geochim. Cosmochim. Acta 75, 3011–3023 (2011).

    ADS  CAS  Article  Google Scholar 

  • 105.

    Alexandratos, V. G., Elzinga, E. J. & Reeder, R. J. Arsenate uptake by calcite: macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochim. Cosmochim. Acta 71, 4172–4187 (2007).

    ADS  CAS  Article  Google Scholar 

  • 106.

    Füger, A., Konrad, F., Leis, A., Dietzel, M. & Mavromatis, V. Effect of growth rate and pH on lithium incorporation in calcite. Geochim. Cosmochim. Acta 248, 14–24 (2019).

    ADS  Article  CAS  Google Scholar 

  • 107.

    vander Putten, E., Dehairs, F., Keppens, E. & Baeyens, W. High resolution distribution of trace elements in the calcite shell layer of modern Mytilus edulis: environmental and biological controls. Geochim. Cosmochim. Acta 64, 997–1011 (2000).

    ADS  CAS  Article  Google Scholar 

  • 108.

    Vielzeuf, D. et al. Distribution of sulphur and magnesium in the red coral. Chem. Geol. 355, 13–27 (2013).

    ADS  CAS  Article  Google Scholar 

  • 109.

    Trong Nguyen, L. et al. Distribution of trace element in Japanese red coral Paracorallium japonicum by μ-XRF and sulfur speciation by XANES: linkage between trace element distribution and growth ring formation. Geochim. Cosmochim. Acta 127, 1–9 (2014).

    ADS  CAS  Article  Google Scholar 

  • 110.

    Tanaka, K. et al. Microscale magnesium distribution in shell of the Mediterranean mussel Mytilus galloprovincialis: an example of multiple factors controlling Mg/Ca in biogenic calcite. Chem. Geol. 511, 521–532 (2019).

    ADS  CAS  Article  Google Scholar 

  • 111.

    Drake, H., Tullborg, E. L., Hogmalm, K. J. & Åström, M. E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1km depth. Geochim. Cosmochim. Acta 84, 217–238 (2012).

    ADS  CAS  Article  Google Scholar 

  • 112.

    Gabitov, R. I., Sadekov, A. & Migdisov, A. REE incorporation into calcite individual crystals as one time spike addition. Minerals 7, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 113.

    Svensson, U. & Dreybrodt, W. Dissolution kinetics of natural calcite minerals in CO2-water systems approaching calcite equilibrium. Chem. Geol. 100, 129–145 (1992).

    ADS  CAS  Article  Google Scholar 

  • 114.

    Eisenlohr, L., Meteva, K., Gabrovšek, F. & Dreybrodt, W. The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O–CO2 solutions. Geochim. Cosmochim. Acta 63, 989–1001 (1999).

    ADS  CAS  Article  Google Scholar 

  • 115.

    Briese, L., Arvidson, R. S. & Luttge, A. The effect of crystal size variation on the rate of dissolution: a kinetic Monte Carlo study. Geochim. Cosmochim. Acta 212, 167–175 (2017).

    ADS  CAS  Article  Google Scholar 

  • 116.

    Noiriel, C., Oursin, M. & Daval, D. Examination of crystal dissolution in 3D: a way to reconcile dissolution rates in the laboratory? Geochim. Cosmochim. Acta 273, 1–25 (2020).

    ADS  CAS  Article  Google Scholar 

  • 117.

    Jacquat, O., Voegelin, A., Juillot, F. & Kretzschmar, R. Changes in Zn speciation during soil formation from Zn-rich limestones. Geochim. Cosmochim. Acta 73, 5554–5571 (2009).

    ADS  CAS  Article  Google Scholar 

  • 118.

    Wilson, M. J. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Miner39, 233–266 (2004).

    ADS  CAS  Article  Google Scholar 

  • 119.

    Velde, B. & Alain, M. The Origin of Clay Minerals in Soils and Weathered Rocks (Springer, New York, 2008).

    Google Scholar 

  • 120.

    Nesbitt, H. W. Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature 279, 206–210 (1979).

    ADS  CAS  Article  Google Scholar 

  • 121.

    Li, M. Y. H., Zhou, M. F. & Williams-Jones, A. E. The genesis of regolith-hosted heavy rare earth element deposits: insights from the world-class Zudong deposit in Jiangxi province, South China. Econ. Geol114, 541–568 (2019).

    Article  Google Scholar 

  • 122.

    Li, M. Y. H. & Zhou, M. F. The role of clay minerals in formation of the regolith-hosted heavy rare earth element deposits. Am. Miner. 105, 92–108 (2020).

    ADS  Article  Google Scholar 

  • 123.

    Savage, K. S., Tingle, T. N., O’Day, P. A., Waychunas, G. A. & Bird, D. K. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Appl. Geochem15, 1219–1244 (2000).

    CAS  Article  Google Scholar 

  • 124.

    Zhu, Y. et al. Characterization, dissolution and solubility of the hydroxypyromorphite-hydroxyapatite solid solution [(PbxCa1-x)5(PO4)3OH] at 25 °C and pH 2–9. Geochem. Trans. 17, 1–18 (2016).

    ADS  Article  CAS  Google Scholar 

  • 125.

    Godelitsas, A., Astilleros, J. M., Hallam, K., Harissopoulos, S. & Putnis, A. Interaction of calcium carbonates with lead in aqueous solutions. Environ. Sci. Technol37, 3351–3360 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 126.

    Schindler, M., Hawthorne, F. C., Putnis, C. & Putnis, A. Growth of uranyl-hydroxy-hydrate and uranyl-carbonate minerals on the (104) surface of calcite. Can. Mineral42, 1683–1697 (2004).

    CAS  Article  Google Scholar 

  • 127.

    Schindler, M. & Putnis, A. Crystal growth of schoepite on the (104) surface of calcite. Can. Mineral42, 1667–1681 (2004).

    CAS  Article  Google Scholar 

  • 128.

    Tang, H., Xian, H., He, H., Wei, J. & Liu, H. Science of the total environment kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci. Total Environ. 668, 602–616 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 129.

    Klasa, J. et al. An atomic force microscopy study of the dissolution of calcite in the presence of phosphate ions. Geochim. Cosmochim. Acta 117, 115–128 (2013).

    ADS  CAS  Article  Google Scholar 

  • 130.

    Renard, F., Røyne, A. & Putnis, C. V. Timescales of interface-coupled dissolution-precipitation reactions on carbonates. Geosci. Front10, 17–27 (2019).

    CAS  Article  Google Scholar 

  • 131.

    Yang, T., Huh, W., Jho, J. Y. & Kim, I. W. Effects of fluoride and polymeric additives on the dissolution of calcite and the subsequent formation of fluorite. Colloids Surf. A 451, 75–84 (2014).

    CAS  Article  Google Scholar 

  • 132.

    Yuan, K., Lee, S. S., De Andrade, V., Sturchio, N. C. & Fenter, P. Replacement of calcite (CaCO3) by cerussite (PbCO3). Environ. Sci. Technol50, 12984–12991 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 133.

    Pearce, M. A., Timms, N. E., Hough, R. M. & Cleverley, J. S. Reaction mechanism for the replacement of calcite by dolomite and siderite: implications for geochemistry, microstructure and porosity evolution during hydrothermal mineralisation. Contrib. Miner. Pet166, 995–1009 (2013).

    ADS  CAS  Article  Google Scholar 

  • 134.

    Jonas, L., Müller, T., Dohmen, R., Baumgartner, L. & Putlitz, B. Transport-controlled hydrothermal replacement of calcite by Mg-carbonates. Geology 43, 779–783 (2015).

    ADS  CAS  Article  Google Scholar 

  • 135.

    Kondratiuk, P., Tredak, H., Ladd, A. J. C. & Szymczak, P. Synchronization of dissolution and precipitation fronts during infiltration-driven replacement in porous rocks. Geophys. Res. Lett. 42, 2244–2252 (2015).

    ADS  Article  Google Scholar 

  • 136.

    Takahashi, Y., Miyoshi, T., Yabuki, S., Inada, Y. & Shimizu, H. Observation of transformation of calcite to gypsum in mineral aerosols by Ca K-edge X-ray absorption near-edge structure (XANES). Atmos. Environ42, 6535–6541 (2008).

    ADS  CAS  Article  Google Scholar 

  • 137.

    Ruiz-Agudo, E. et al. Experimental study of the replacement of calcite by calcium sulphates. Geochim. Cosmochim. Acta 156, 75–93 (2015).

    ADS  CAS  Article  Google Scholar 

  • 138.

     Ruiz-Agudo, E., Álvarez-Lloret, P., Putnis, C. V., Rodriguez-Navarro, A. B. & Putnis, A. Influence of chemical and structural factors on the calcite-calcium oxalate transformation. CrystEngComm 15, 9968–9979 (2013).

    CAS  Article  Google Scholar 

  • 139.

    Pedrosa, E. T., Boeck, L., Putnis, C. V. & Putnis, A. The replacement of a carbonate rock by fluorite: kinetics and microstructure. Am. Miner. 102, 126–134 (2017).

    ADS  Article  Google Scholar 

  • 140.

    Glover, E. D. & Sippel, R. F. Experimental pseudomorphs: replacement of calcite by fluorite. Am. Miner47, 1156–1165 (1962).

    CAS  Google Scholar 

  • 141.

    Subhas, A. V. et al. Catalysis and chemical mechanisms of calcite dissolution in seawater. Proc. Natl. Acad. Sci. USA 114, 8175–8180 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 142.

    Renard, F., Putnis, C. V., Montes-Hernandez, G. & King, H. E. Siderite dissolution coupled to iron oxyhydroxide precipitation in the presence of arsenic revealed by nanoscale imaging. Chem. Geol449, 123–134 (2017).

    ADS  CAS  Article  Google Scholar 

  • 143.

    Marocchi, M., Bureau, H., Fiquet, G. & Guyot, F. In-situ monitoring of the formation of carbon compounds during the dissolution of iron(II) carbonate (siderite). Chem. Geol290, 145–155 (2011).

    ADS  CAS  Article  Google Scholar 

  • 144.

    Perdikouri, C., Piazolo, S., Kasioptas, A., Schmidt, B. C. & Putnis, A. Hydrothermal replacement of aragonite by calcite: interplay between replacement, fracturing and growth. Eur. J. Miner25, 123–136 (2013).

    CAS  Article  Google Scholar 

  • 145.

    Greer, H. F., Zhou, W. & Guo, L. Phase transformation of Mg-calcite to aragonite in active-forming hot spring travertines. Miner. Pet. 109, 453–462 (2015).

    CAS  Article  Google Scholar 

  • 146.

    Hacker, B. R., Kirby, S. H. & Bohlen, S. R. Time and metamorphic petrology: calcite to aragonite experiments. Science 258, 110–112 (1992).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 147.

    Hacker, B. R., Rubie, D. C., Kirby, S. H. & Bohlen, S. R. The calcite → aragonite transformation in low-Mg marble: equilibrium relations, transformations mechanisms, and rates. J. Geophys. Res. Solid Earth 110, 1–16 (2005).

    Article  CAS  Google Scholar 

  • 148.

    Lin, S. J. & Huang, W. L. Polycrystalline calcite to aragonite transformation kinetics: experiments in synthetic systems. Contrib. Miner. Pet. 147, 604–614 (2004).

    ADS  CAS  Article  Google Scholar 

  • 149.

    Huang, Y. C. et al. Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J. Phys. Chem. B 116, 14295–14301 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 150.

    Monger, H. C., Daugherty, L. A. & Lindemann, W. C. Microbial precipitation of pedogenic calcite. Geology 19, 997–1000 (1991).

    ADS  CAS  Article  Google Scholar 

  • 151.

    Claquin, T., Schulz, M. & Balkanski, Y. J. Modeling the mineralogy of atmospheric dust sources. J. Geophys. Res. Atmos. 104, 22243–22256 (1999).

    ADS  CAS  Article  Google Scholar 

  • 152.

    Engelbrecht, J. P. & Derbyshire, E. Airborne mineral dust. Elements 6, 241–246 (2010).

    Article  Google Scholar 

  • 153.

    Falini, G., Albeck, S., Weiner, S. & Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).

    ADS  Article  Google Scholar 

  • 154.

    Rodgers, A. L. & Spector, M. Human stones. Endeavour 5, 119–126 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 155.

    Baconnier, S. et al. Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics 23, 488–495 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 156.

    Tessier, A., Campbell, P. G. C. & Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem51, 844–851 (1979).

    CAS  Article  Google Scholar 

  • 157.

    Gleyzes, C., Tellier, S. & Astruc, M. Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal. Chem21, 451–467 (2002).

    CAS  Article  Google Scholar 

  • 158.

    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).

    ADS  CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Undergraduates ramp up research during pandemic diaspora

    Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization