in

Divergent responses of soil organic carbon to afforestation

  • 1.

    Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    CAS  Google Scholar 

  • 2.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014); http://ipcc.ch/report/ar5/

  • 3.

    Global Forest Resources Assessment 2015 (FAO, 2016).

  • 4.

    Lu, F. et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl Acad. Sci. USA 115, 4039–4044 (2018).

    CAS  Google Scholar 

  • 5.

    Yao, Y., Piao, S. & Wang, T. Future biomass carbon sequestration capacity of Chinese forests. Sci. Bull. 63, 1108–1117 (2018).

    CAS  Google Scholar 

  • 6.

    Fang, J., Chen, A., Peng, C., Zhao, S. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).

    CAS  Google Scholar 

  • 7.

    Paul, K., Polglase, P., Nyakuengama, J. & Khanna, P. K. Change in soil carbon following afforestation. For. Ecol. Manag. 168, 241–257 (2002).

    Google Scholar 

  • 8.

    Guo, L. & Gifford, R. Soil carbon stocks and land use change: a meta-analysis. Glob. Change Biol. 8, 345–360 (2002).

    Google Scholar 

  • 9.

    Shi, S., Zhang, W., Zhang, P., Yu, Y. & Ding, F. A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For. Ecol. Manag. 296, 53–63 (2013).

    Google Scholar 

  • 10.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob. Change Biol. 17, 1658–1670 (2011).

    Google Scholar 

  • 11.

    Li, D., Niu, S. & Luo, Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol. 195, 172–181 (2012).

    CAS  Google Scholar 

  • 12.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Google Scholar 

  • 13.

    Shvidenko, A. & Nilsson, S. A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998. Tellus 55B, 391–415 (2003).

    CAS  Google Scholar 

  • 14.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    CAS  Google Scholar 

  • 15.

    Eighth National Forest Resource Inventory Report (2009–2013) (State Forestry Administration of the People’s Republic of China, 2014).

  • 16.

    He, B., Chen, A., Wang, H. & Wang, Q. Dynamic response of satellite-derived vegetation growth to climate change in the Three North Shelter Forest region in China. Remote Sens. 7, 9998–10016 (2015).

    Google Scholar 

  • 17.

    Bryan, B. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).

    CAS  Google Scholar 

  • 18.

    Duan, H. et al. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 64, 1011–1020 (2011).

    Google Scholar 

  • 19.

    Houghton, R. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus Ser. B 51, 298–313 (1999).

    Google Scholar 

  • 20.

    Li, W. et al. Temporal response of soil organic carbon after grassland-related land-use change. Glob. Change Biol. 24, 4731–4746 (2018).

    Google Scholar 

  • 21.

    Peng, S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    CAS  Google Scholar 

  • 22.

    Shi, S. & Han, P. Estimating the soil carbon sequestration potential of China’s Grain for Green Project. Glob. Biogeochem. Cycles 28, 1279–1294 (2014).

    CAS  Google Scholar 

  • 23.

    Wang, W. et al. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Glob. Change Biol. 17, 2657–2676 (2011).

    Google Scholar 

  • 24.

    Binkley D. & Fisher R. Ecology and Management of Forest Soils 4th edn (Wiley-Blackwell, 2013).

  • 25.

    Crowther, T. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).

    CAS  Google Scholar 

  • 26.

    Zhu, J. et al. Carbon stocks and changes of dead organic matter in China’s forests. Nat. Commun. 8, 151 (2017).

    Google Scholar 

  • 27.

    Davidson, E. & Janssens, I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS  Google Scholar 

  • 28.

    Harden, J. et al. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Change Biol. 24, e705–e718 (2018).

    Google Scholar 

  • 29.

    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

    CAS  Google Scholar 

  • 30.

    Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    CAS  Google Scholar 

  • 31.

    Hart, P., Rayner, J. & Jenkinson, D. Influence of pool substitution on the interpretation of fertilizer experiments with 15N. J. Soil Sci. 37, 389403 (1986).

    Google Scholar 

  • 32.

    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).

    CAS  Google Scholar 

  • 33.

    Schlesinger, W. & Lichter, J. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411, 466–469 (2001).

    CAS  Google Scholar 

  • 34.

    Hong, S. et al. Afforestation neutralizes soil pH. Nat. Commun. 9, 520 (2018).

    Google Scholar 

  • 35.

    Li, Y., Piao, S., Chen, A., Ciais, P. & Li, L. Z. X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl Sci. Rev. 7, 897–912 (2020).

    Google Scholar 

  • 36.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Google Scholar 

  • 37.

    Xiong, Y. & Li, Q. Soils in China (Press of Sciences, 1987).

  • 38.

    Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Change Biol. 13, 1989–2007 (2007).

    Google Scholar 

  • 39.

    Fang, J., Liu, G. & Xu, S. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica 16, 497–508 (1996).

    Google Scholar 

  • 40.

    Yang, K., He, J., Tang, W., Qin, J. & Cheng, C. On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau. Agric. For. Meteorol. 150, 38–46 (2010).

    Google Scholar 

  • 41.

    Chen, Y. et al. Improving land surface temperature modeling for dry land of China. J. Geophys. Res. Atmos. 116, 999–1010 (2011).

    Google Scholar 

  • 42.

    Batjes, N. World Soil Property Estimates for Broad-scale Modelling (WISE30sec, v.1.0) Report 2015/01 (ISRIC Soil Data Hub, 2015).

  • 43.

    Harmonized World Soil Database Version 1.2 (FAO, 2012).

  • 44.

    Running, S. MOD17A3H v006 MODIS/Terra Net Primary Production Yearly L4 Global 500m SIN Grid (NASA, 2015); https://doi.org/10.5067/modis/mod17a3h.006

  • 45.

    Vegetation Atlas of China (Press of Sciences, 2001).

  • 46.

    Zhang, Y., Yao, Y., Wang, X., Liu, Y. & Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 4, 108–116 (2017).

    Google Scholar 

  • 47.

    Benjamini, Y. & Yekutieli, D. The control of false discovery rate in multiple testing under dependency. Ann. Stat. 4, 1165–1188 (2001).

    Google Scholar 

  • 48.

    Elith, J., Leathwick, J. & Hastie, T. Working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  Google Scholar 

  • 49.

    Friedman, J. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    Google Scholar 

  • 50.

    Friedman, J. & Meulman, J. Multiple additive regression trees with application in epidemiology. Stat. Med. 22, 1365–1381 (2010).

    Google Scholar 

  • 51.

    Zeng, Z., Chen, A., Piao, S., Rabin, S. & Shen, Z. Environmental determinants of tropical forest and savanna distribution: a quantitative model evaluation and its implication. J. Geophys. Res. Biogeosci. 119, 1432–1445 (2014).

    Google Scholar 


  • Source: Ecology - nature.com

    Dimorphic flowers modify the visitation order of pollinators from male to female flowers

    Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation