in

Diversity begets diversity in mammal species and human cultures

  • 1.

    Mace, R. & Pagel, M. A latitudinal gradient in the density of human languages in North America. Proc. R. Soc. Lond. B 261, 117–121 (1995).

    ADS  Article  Google Scholar 

  • 2.

    Nettle, D. Linguistic diversity of the Americas can be reconciled with a recent colonization. Proc. Natl. Acad. Sci. 96, 3325–3329 (1999).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Collard, I. F. & Foley, R. A. Latitudinal patterns and environmental determinants of recent human cultural diversity: do humans follow biogeographical rules?. Evol. Ecol. Res. 4, 371–383 (2002).

    Google Scholar 

  • 4.

    Pagel, M. & Mace, R. The cultural wealth of nations. Nature 428, 275 (2004).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 5.

    Moore, J. L. et al. The distribution of cultural and biological diversity in Africa. Proc. R. Soc. Lond. B. Biol. Sci. 269, 1645–1653 (2002).

    Article  Google Scholar 

  • 6.

    Maffi, L. Linguistic, cultural, and biological diversity. Annu. Rev. Anthr. 34, 599–617 (2005).

    Article  Google Scholar 

  • 7.

    Harcourt, A. Human Biogeography (Univ of California Press, Berkeley, 2012).

    Google Scholar 

  • 8.

    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).

    Article  Google Scholar 

  • 9.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 10.

    Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    Article  PubMed  Google Scholar 

  • 11.

    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).

    Article  Google Scholar 

  • 12.

    Belmaker, J. & Jetz, W. Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol. Lett. 18, 563–571 (2015).

    Article  PubMed  Google Scholar 

  • 13.

    Yasuhara, M., Hunt, G., Cronin, T. M. & Okahashi, H. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proc. Natl. Acad. Sci. 106, 21717–21720 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 14.

    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl. Acad. Sci. 111, 8125–8130 (2014).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  • 16.

    Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).

    Article  Google Scholar 

  • 17.

    Roy, K., Jablonski, D. & Martien, K. K. Invariant size–frequency distributions along a latitudinal gradient in marine bivalves. Proc. Natl. Acad. Sci. 97, 13150–13155 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 18.

    Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Laenen, B. et al. Evolutionary origin of the latitudinal diversity gradient in liverworts. Mol. Phylogenet. Evol. 127, 606–612 (2018).

    Article  PubMed  Google Scholar 

  • 20.

    Guernier, V., Hochberg, M. E. & Guégan, J.-F. Ecology drives the worldwide distribution of human diseases. PLoS Biol. 2, e141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).

    Google Scholar 

  • 22.

    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    Article  PubMed  Google Scholar 

  • 23.

    Nettle, D. Explaining global patterns of language diversity. J. Anthropol. Archaeol. 17, 354–374 (1998).

    Article  Google Scholar 

  • 24.

    Nettle, D. Linguistic Diversity (Oxford University Press, Oxford, 1999).

    Google Scholar 

  • 25.

    Allen, A. P., Brown, J. H. & Gillooly, J. F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 26.

    Brown, J. H. Why are there so many species in the tropics?. J. Biogeogr. 41, 8–22 (2014).

    Article  PubMed  Google Scholar 

  • 27.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  • 28.

    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142 (1993).

    ADS  Article  Google Scholar 

  • 29.

    Savage, V. M. Improved approximations to scaling relationships for species, populations, and ecosystems across latitudinal and elevational gradients. J. Theor. Biol. 227, 525–534 (2004).

    MATH  Article  PubMed  Google Scholar 

  • 30.

    Nettle, D. Language diversity in West Africa: an ecological approach. J. Anthropol. Archaeol. 15, 403–438 (1996).

    Article  Google Scholar 

  • 31.

    Michaletz, S., Cheng, D., Kerkhoff, A. & Enquist, B. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Lomolino, M. V., Riddle, B. R., Whittaker, R. J. & Brown, J. H. Biogeography (Sinauer, Sunderland, 2010).

    Google Scholar 

  • 33.

    Brown, J. H. et al. Macroecology meets macroeconomics: resource scarcity and global sustainability. Ecol. Eng. 65, 24–32 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Brown, J. H. et al. Energetic limits to economic growth. Bioscience 61, 19–26 (2011).

    Article  Google Scholar 

  • 35.

    Nekola, J. C. et al. The Malthusian–Darwinian dynamic and the trajectory of civilization. Trends Ecol. Evol. 28, 127–130 (2013).

    Article  Google Scholar 

  • 36.

    Burger, O., DeLong, J. P. & Hamilton, M. J. Industrial energy use and the human life history. Sci. Rep. 1, 56 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Burger, J. R., Weinberger, V. P. & Marquet, P. A. Extra-metabolic energy use and the rise in human hyper-density. Sci. Rep. 7, 43869 (2017).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals?. Am. Nat. 93, 145–159 (1959).

    Article  Google Scholar 

  • 39.

    Brown, J. H. Two decades of homage to Santa Rosalia: toward a general theory of diversity. Am. Zool. 21, 877–888 (1981).

    ADS  Article  Google Scholar 

  • 40.

    Gavin, M. C. et al. Process-based modelling shows how climate and demography shape language diversity. Glob. Ecol. Biogeogr. 26, 584–591 (2017).

    Article  Google Scholar 

  • 41.

    Derungs, C., Köhl, M., Weibel, R. & Bickel, B. Environmental factors drive language density more in food-producing than in hunter–gatherer populations. Proc. R. Soc. B Biol. Sci. 285, 20172851 (2018).

    Article  Google Scholar 

  • 42.

    Gavin, M. C. et al. Toward a mechanistic understanding of linguistic diversity. Bioscience 63, 524–535 (2013).

    Article  Google Scholar 

  • 43.

    Túlio, P. C. M. et al. Drivers of geographical patterns of North American language diversity. Proc. R. Soc. B Biol. Sci. 286, 20190242 (2019).

    Article  Google Scholar 

  • 44.

    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 45.

    Currie, T. E. & Mace, R. Political complexity predicts the spread of ethnolinguistic groups. Proc. Natl. Acad. Sci. 106, 7339–7344 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 46.

    Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765–4769 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 47.

    Hamilton, M. J., Lobo, J., Rupley, E., Youn, H. & West, G. B. The ecological and evolutionary energetics of hunter-gatherer residential mobility. Evol. Anthropol. Issues News Rev. 25, 124–132 (2016).

    Article  Google Scholar 

  • 48.

    Hamilton, M. J., Walker, R. S., Buchanan, B. & Sandeford, D. S. Scaling human sociopolitical complexity. PLoS ONE 15, e0234615 (2020).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 49.

    Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 50.

    Kleiber, M. The fire of life. An introduction to animal energetics. Fire Life Introd. Anim. Energ. (1961).

  • 51.

    Brummer, A. B., Savage, V. M. & Enquist, B. J. A general model for metabolic scaling in self-similar asymmetric networks. PLoS Comput. Biol. 13, e1005394 (2017).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Hulbert, A. J. A sceptics view: “Kleiber’s Law” or the “3/4 Rule” is neither a law nor a rule but rather an empirical approximation. Systems 2, 186–202 (2014).

    Article  Google Scholar 

  • 53.

    Ballesteros, F. J. et al. On the thermodynamic origin of metabolic scaling. Sci. Rep. 8, 1448 (2018).

    ADS  Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 55.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).

    ADS  MathSciNet  CAS  MATH  Article  PubMed  Google Scholar 

  • 57.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 58.

    Savage, V. M. et al. The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).

    Article  Google Scholar 

  • 59.

    Hunt, D. & Savage, V. M. Asymmetries arising from the space-filling nature of vascular networks. Phys. Rev. E 93, 062305 (2016).

    ADS  Article  CAS  PubMed  Google Scholar 

  • 60.

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 61.

    Brown, J. H. & Sibly, R. M. The metabolic theory of ecology and its central equation. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 21–33 (Wiley and Sons, New York, 2012).

    Google Scholar 

  • 62.

    Anderson-Teixeira, K. J. & Vitousek, P. M. Ecosystems. In Metabolic Ecology: A Scaling Approach (eds Sibly, R. M. et al.) 99–111 (Wiley-Blackwell, New York, 2012).

    Google Scholar 

  • 63.

    Chapin, F. S. III., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology (Springer, New York, 2011).

    Google Scholar 

  • 64.

    Falkowski, P. et al. The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 65.

    Williams, M. et al. Predicting gross primary productivity in terrestrial ecosystems. Ecol. Appl. 7, 882–894 (1997).

    Article  Google Scholar 

  • 66.

    Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  • 67.

    Anderson, K. J., Allen, A. P., Gillooly, J. F. & Brown, J. H. Temperature-dependence of biomass accumulation rates during secondary succession. Ecol. Lett. 9, 673–682 (2006).

    Article  PubMed  Google Scholar 

  • 68.

    Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved DNA in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article  PubMed  Google Scholar 

  • 70.

    Martínez-Meyer, E., Townsend Peterson, A. & Hargrove, W. W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Glob. Ecol. Biogeogr. 13, 305–314 (2004).

    Article  Google Scholar 

  • 71.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) (Princeton University Press, Princeton, 2001).

    Google Scholar 

  • 72.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, Princeton, 1984).

    Google Scholar 

  • 73.

    Richerson, P. J. & Boyd, R. Not By Genes Alone (University of Chicago Press, Chicago, 2005).

    Google Scholar 

  • 74.

    Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton University Press, Princeton, 2017).

    Google Scholar 

  • 75.

    Turchin, P. Ultrasociety: How 10,000 Years of War Made Humans the Greatest Cooperators on Earth. (Beresta Books, 2015).

  • 76.

    Van Valen, L. The red queen. Am. Nat. 111, 809–810 (1977).

    Article  Google Scholar 

  • 77.

    Perreault, C. The Pace of cultural evolution. PLoS ONE 7, e45150 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Perreault, C. The Quality of the Archaeological Record (University of Chicago Press, Chicago, 2019).

    Google Scholar 

  • 79.

    Greenhill, S. J., Atkinson, Q. D., Meade, A. & Gray, R. D. The shape and tempo of language evolution. Proc. R. Soc. Lond. B Biol. Sci. 277, 2443–2450 (2010).

    CAS  Google Scholar 

  • 80.

    Moore, G. E. Cramming more components onto integrated circuits, Electronics, 38: 8 (1965). URL Ftpdownload Intel Comresearchsiliconmoorespaper Pdf 16, (2005).

  • 81.

    Youn, H., Strumsky, D., Bettencourt, L. M. & Lobo, J. Invention as a combinatorial process: evidence from US patents. J. R. Soc. Interface 12, 20150272 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 82.

    Magurran, A. E. Measuring Biological Diversity (Wiley, New York, 2004).

    Google Scholar 

  • 83.

    Cavalli-Sforza, L. L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton University Press, Princeton, 1981).

    Google Scholar 

  • 84.

    Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. Issues News Rev. 12, 123–135 (2003).

    Article  Google Scholar 

  • 85.

    Prothero, D. R. Species longevity in North American fossil mammals. Integr. Zool. 9, 383–393 (2014).

    Article  PubMed  Google Scholar 

  • 86.

    Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Walker, R. S., Wichmann, S., Mailund, T. & Atkisson, C. J. Cultural phylogenetics of the Tupi language family in lowland South America. PLoS ONE 7, e35025 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 89.

    Cramer, W. et al. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol. 5, 1–15 (1999).

    Article  Google Scholar 

  • 90.

    Wessel, P. & Smith, W. H. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).

    Article  Google Scholar 

  • 91.

    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. (2014).


  • Source: Ecology - nature.com

    Protecting nursery areas without fisheries management is not enough to conserve the most endangered parrotfish of the Atlantic Ocean

    Estimating possible bumblebee range shifts in response to climate and land cover changes