in

Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome

  • 1.

    Zhang, Y. Z., Chen, Y. M., Wang, W., Qin, X. C. & Holmes, E. C. Expanding the RNA virosphere by unbiased metagenomics. Annu. Rev. Virol. 6, 119–139 (2019).

    CAS  PubMed  Google Scholar 

  • 2.

    Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).

    CAS  PubMed  Google Scholar 

  • 3.

    Lefeuvre, P. et al. Evolution and ecology of plant viruses. Nat. Rev. Microbiol. 17, 632–644 (2019).

    CAS  PubMed  Google Scholar 

  • 4.

    Obbard, D. J. Expansion of the metazoan virosphere: progress, pitfalls, and prospects. Curr. Opin. Virol. 31, 17–23 (2018).

    PubMed  Google Scholar 

  • 5.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    CAS  PubMed  Google Scholar 

  • 6.

    Backstrom, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497-18 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Zhao, L., Rosario, K., Breitbart, M. & Duffy, S. Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv. Virus Res. 103, 71–133 (2019).

    PubMed  Google Scholar 

  • 8.

    Chow, C. E. & Suttle, C. A. Biogeography of viruses in the sea. Annu. Rev. Virol. 2, 41–66 (2015).

    CAS  PubMed  Google Scholar 

  • 9.

    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Simmonds, P. et al. Consensus statement: virus taxonomy in the age of metagenomics. Nat. Rev. Microbiol. 15, 161–168 (2017).

    CAS  PubMed  Google Scholar 

  • 11.

    Vlok, M., Lang, A. S. & Suttle, C. A. Marine RNA virus quasispecies are distributed throughout the oceans. mSphere 4, e00157-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Greninger, A. L. A decade of RNA virus metagenomics is (not) enough. Virus Res. 244, 218–229 (2018).

    CAS  PubMed  Google Scholar 

  • 13.

    Janowski, A. B. et al. Statoviruses, a novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology 504, 36–44 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Miranda, J. A., Culley, A. I., Schvarcz, C. R. & Steward, G. F. RNA viruses as major contributors to Antarctic virioplankton. Environ. Microbiol. 18, 3714–3727 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Ng, T. F. et al. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J. Virol. 86, 12161–12175 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Waldron, F. M., Stone, G. N. & Obbard, D. J. Metagenomic sequencing suggests a diversity of RNA interference-like responses to viruses across multicellular eukaryotes. PLoS Genet. 14, e1007533 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).

    CAS  PubMed  Google Scholar 

  • 18.

    Lopez-Bueno, A., Rastrojo, A., Peiro, R., Arenas, M. & Alcami, A. Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake. Mol. Ecol. 24, 4812–4825 (2015).

    CAS  PubMed  Google Scholar 

  • 19.

    Moniruzzaman, M. et al. Virus–host relationships of marine single-celled eukaryotes resolved from metatranscriptomics. Nat. Commun. 8, 16054 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Rosario, K., Nilsson, C., Lim, Y. W., Ruan, Y. & Breitbart, M. Metagenomic analysis of viruses in reclaimed water. Environ. Microbiol. 11, 2806–2820 (2009).

    CAS  PubMed  Google Scholar 

  • 21.

    Lang, A. S., Culley, A. I. & Suttle, C. A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 320, 206–217 (2004).

    CAS  PubMed  Google Scholar 

  • 22.

    Nagasaki, K. Dinoflagellates, diatoms, and their viruses. J. Microbiol. 46, 235–243 (2008).

    PubMed  Google Scholar 

  • 23.

    Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Tomaru, Y., Takao, Y., Suzuki, H., Nagumo, T. & Nagasaki, K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl. Environ. Microbiol. 75, 2375–2381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Kimura, K. & Tomaru, Y. Discovery of two novel viruses expands the diversity of single-stranded DNA and single-stranded RNA viruses infecting a cosmopolitan marine diatom. Appl. Environ. Microbiol. 81, 1120–1131 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Takao, Y., Mise, K., Nagasaki, K., Okuno, T. & Honda, D. Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp. J. Gen. Virol. 87, 723–733 (2006).

    CAS  PubMed  Google Scholar 

  • 27.

    Gustavsen, J. A., Winget, D. M., Tian, X. & Suttle, C. A. High temporal and spatial diversity in marine RNA viruses implies that they have an important role in mortality and structuring plankton communities. Front. Microbiol. 5, 703 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Vlok, M., Lang, A. S. & Suttle, C. A. Application of a sequence-based taxonomic classification method to uncultured and unclassified marine single-stranded RNA viruses in the order Picornavirales. Virus Evol. 5, vez056 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Li, C. X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. eLife 4, e05378 (2015).

    PubMed Central  Google Scholar 

  • 30.

    Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).

    CAS  PubMed  Google Scholar 

  • 31.

    Shi, M. et al. Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. J. Virol. 90, 659–669 (2016).

    CAS  PubMed  Google Scholar 

  • 32.

    Fauver, J. R. et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses. Virology 498, 288–299 (2016).

    CAS  PubMed  Google Scholar 

  • 33.

    Webster, C. L. et al. The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol. 13, e1002210 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018).

    CAS  PubMed  Google Scholar 

  • 35.

    Marzano, S. Y. et al. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J. Virol. 90, 6846–6863 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Kotta-Loizou, I. & Coutts, R. H. Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence. PLoS Pathog. 13, e1006183 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 37.

    Krishnamurthy, S. R., Janowski, A. B., Zhao, G., Barouch, D. & Wang, D. Hyperexpansion of RNA bacteriophage diversity. PLoS Biol. 14, e1002409 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Roossinck, M. J. Evolutionary and ecological links between plant and fungal viruses. N. Phytol. 221, 86–92 (2018).

    Google Scholar 

  • 39.

    Culley, A. New insight into the RNA aquatic virosphere via viromics. Virus Res. 244, 84–89 (2018).

    CAS  PubMed  Google Scholar 

  • 40.

    Coy, S. R., Gann, E. R., Pound, H. L., Short, S. M. & Wilhelm, S. W. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses 10, 487 (2018).

    PubMed Central  Google Scholar 

  • 41.

    Callanan, J. et al. Expansion of known ssRNA phage genomes: from tens to over a thousand. Sci. Adv. 6, eaay5981 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Kuhn, J. H. et al. Classify viruses—the gain is worth the pain. Nature 566, 318–320 (2019).

    PubMed  Google Scholar 

  • 44.

    Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Micobiol. Mol. Biol. Rev. 84, e0061-19 (2020).

    Google Scholar 

  • 45.

    Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).

    CAS  PubMed  Google Scholar 

  • 46.

    Valles, S. M. et al. ICTV virus taxonomy profile: Dicistroviridae. J. Gen. Virol. 98, 355–356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Revers, F. & Garcia, J. A. Molecular biology of Potyviruses. Adv. Virus Res. 92, 101–199 (2015).

    CAS  PubMed  Google Scholar 

  • 48.

    Gibbs, A. J., Hajizadeh, M., Ohshima, K. & Jones, R. A. C. The Potyviruses: an evolutionary synthesis is emerging. Viruses 12, 132 (2020).

    CAS  PubMed Central  Google Scholar 

  • 49.

    Dolja, V. V., Krupovic, M. & Koonin, E. V. Deep roots and splendid boughs of the global plant virome. Annu. Rev. Phytopathol. 58, https://doi.org/10.1146/annurev-phyto-030320-041346 (2020).

  • 50.

    Koonin, E. V., Dolja, V. V. & Krupovic, M. Origins and evolution of viruses of eukaryotes: the ultimate modularity. Virology 479-480, 2–25 (2015).

    CAS  PubMed  Google Scholar 

  • 51.

    Dolja, V. V., Boyko, V. P., Agranovsky, A. A. & Koonin, E. V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184, 79–86 (1991).

    CAS  PubMed  Google Scholar 

  • 52.

    Agirrezabala, X. et al. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses. eLife 4, e11795 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Zamora, M. et al. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses. Sci. Adv. 3, eaao2182 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Dolja, V. V. & Koonin, E. V. Common origins and host-dependent diversity of plant and animal viromes. Curr. Opin. Virol. 1, 322–331 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Felix, M. A. et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 9, e1000586 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Yokoi, T., Yamashita, S. & Hibi, T. The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology 311, 394–399 (2003).

    CAS  PubMed  Google Scholar 

  • 57.

    Heller-Dohmen, M., Gopfert, J. C., Pfannstiel, J. & Spring, O. The nucleotide sequence and genome organization of Plasmopara halstedii virus. Virol. J. 8, 123 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Scholz, B. et al. Zoosporic parasites infecting marine diatoms—a black box that needs to be opened. Fungal Ecol. 19, 59–76 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Meldal, B. H. et al. An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol. Phylogenet. Evol. 42, 622–636 (2007).

    CAS  PubMed  Google Scholar 

  • 60.

    Bolduc, B. et al. Identification of novel positive-strand RNA viruses by metagenomic analysis of archaea-dominated Yellowstone hot springs. J. Virol. 86, 5562–5573 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Ferrero, D. S., Buxaderas, M., Rodriguez, J. F. & Verdaguer, N. The structure of the RNA-dependent RNA polymerase of a permutotetravirus suggests a link between primer-dependent and primer-independent polymerases. PLoS Pathog. 11, e1005265 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Gorbalenya, A. E. et al. The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J. Mol. Biol. 324, 47–62 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Sabanadzovic, S., Ghanem-Sabanadzovic, N. A. & Gorbalenya, A. E. Permutation of the active site of putative RNA-dependent RNA polymerase in a newly identified species of plant alpha-like virus. Virology 394, 1–7 (2009).

    CAS  PubMed  Google Scholar 

  • 64.

    Greninger, A. L. & DeRisi, J. L. Draft genome sequences of ciliovirus and brinovirus from San Francisco wastewater. Genome Announc. 3, e00651-15 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Hillman, B. I. & Cai, G. The family Narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).

    PubMed  Google Scholar 

  • 66.

    Schmidt, F., Cherepkova, M. Y. & Platt, R. J. Transcriptional recording by CRISPR spacer acquisition from RNA. Nature 562, 380–385 (2018).

    CAS  PubMed  Google Scholar 

  • 67.

    Lauber, C., Seifert, M., Bartenschlager, R. & Seitz, S. Discovery of highly divergent lineages of plant-associated astro-like viruses sheds light on the emergence of potyviruses. Virus Res. 260, 38–48 (2019).

    CAS  PubMed  Google Scholar 

  • 68.

    Sun, G. et al. Efficient purification and concentration of viruses from a large body of high turbidity seawater. MethodsX 1, 197–206 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Henn, M. R. et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS ONE 5, e9083 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Steinegger, M. & Soding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS  PubMed  Google Scholar 

  • 71.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).

    Google Scholar 

  • 72.

    Soding, J. Protein homology detection by HMM–HMM comparison. Bioinformatics 21, 951–960 (2005).

    PubMed  Google Scholar 

  • 73.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    CAS  PubMed  Google Scholar 

  • 75.

    Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Yutin, N. et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat. Microbiol. 3, 38–46 (2018).

    CAS  PubMed  Google Scholar 

  • 78.

    Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res. 45, D170–D176 (2017).

    CAS  PubMed  Google Scholar 

  • 79.

    Remmert, M., Biegert, A., Hauser, A. & Soding, J. HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment. Nat. Methods 9, 173–175 (2011).

    PubMed  Google Scholar 

  • 80.

    Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).

    CAS  PubMed  Google Scholar 

  • 81.

    Mitchell, A. L. et al. EBI metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res. 46, D726–D735 (2018).

    CAS  PubMed  Google Scholar 

  • 82.

    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Shmakov, S. A. et al. The CRISPR spacer space is dominated by sequences from species-specific mobilomes. mBio 8, e01397-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 84.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa

    Impact of 2019–2020 mega-fires on Australian fauna habitat