in

Drivers of piscivory in a globally distributed aquatic predator (brown trout): a meta-analysis

  • 1.

    Post, D. M. et al. Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. Limnol. Oceanogr. 42, 722–729 (1997).

    ADS  Google Scholar 

  • 2.

    Skov, C., Perrow, M. R., Berg, S. & Skovgaard, H. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake. Freshw. Biol. 47, 2388–2400 (2002).

    Google Scholar 

  • 3.

    Östman, Ö et al. Top-down control as important as nutrient enrichment for eutrophication effects in North Atlantic coastal ecosystems. J. Appl. Ecol. 53, 1138–1147 (2016).

    Google Scholar 

  • 4.

    Sánchez-Hernández, J., Nunn, A. D., Adams, C. & Amundsen, P.-A. Causes and consequences of ontogenetic dietary shifts: A global synthesis using fish models. Biol. Rev. 94, 539–554 (2019).

    PubMed  Google Scholar 

  • 5.

    Sánchez-Hernández, J., Eloranta, A. P., Finstad, A. G. & Amundsen, P.-A. Community structure affects trophic ontogeny in a predatory fish. Ecol. Evol. 7, 358–367 (2017).

    PubMed  Google Scholar 

  • 6.

    Amundsen, P.-A., Svenning, M.-A. & Siikavuopio, S. I. An experimental comparison of cannibalistic response in different Arctic charr (Salvelinus alpinus (L.)). Ecol. Freshw. Fish. 8, 43–48 (1999).

    Google Scholar 

  • 7.

    Pereira, L. S., Keppeler, F. W., Agostinho, A. A. & Winemiller, K. O. Is there a relationship between fish cannibalism and latitude or species richness?. PLoS ONE 12, e0169813 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Eloranta, A. P. et al. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Ecol. Evol. 5, 1664–1675 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Jacobson, P., Bergström, U. & Eklöf, J. Size-dependent diet composition and feeding of Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 24, 137–153 (2019).

    Google Scholar 

  • 10.

    Mehner, T. et al. Intraguild predation and cannibalism in age-0 perch (Perca fluviatilis) and age-0 zander (Stizostedion lucioperca): Interactions with zooplankton succession, prey fish availability and temperature. Ann. Zool. Fenn. 33, 353–361 (1996).

    Google Scholar 

  • 11.

    Jensen, H., Kiljunen, M. & Amundsen, P.-A. Dietary ontogeny and niche shift to piscivory in lacustrine brown trout Salmo trutta revealed by stomach content and stable isotope analyses. J. Fish Biol. 80, 2448–2462 (2012).

    CAS  PubMed  Google Scholar 

  • 12.

    L’Abée-Lund, J. H., Langeland, A. & Sægrov, H. Long-term variation in piscivory in a brown trout population: Effect of changes in available prey organisms. Ecol. Freshw. Fish 11, 260–269 (2002).

    Google Scholar 

  • 13.

    Hesthagen, T., Jonsson, B., Ugedal, O. & Forseth, T. Habitat use and life history of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in some low acidity lakes in central Norway. Hydrobiologia 348, 113–126 (1997).

    Google Scholar 

  • 14.

    Browne, D. R. & Rasmussen, J. B. Shift in the trophic ecology of brook trout resulting from interactions with yellow perch: An intraguild predator–prey interaction. Trans. Am. Fish. Soc. 138, 1109–1122 (2009).

    Google Scholar 

  • 15.

    Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex freshwater-marine ecotone. Environ. Biol. Fish. 34, 29–50 (1992).

    Google Scholar 

  • 16.

    Clavero, M., Prenda, J. & Delibes, M. Trophic diversity of the otter (Lutra lutra L.) in temperate and Mediterranean freshwater habitats. J. Biogeogr. 30, 761–769 (2003).

    Google Scholar 

  • 17.

    Griffiths, D. The size structure of lacustrine Arctic charr (Pisces: Salmonidae) populations. Biol. J. Linn. Soc. 51, 337–357 (1994).

    Google Scholar 

  • 18.

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).

    CAS  PubMed  Google Scholar 

  • 19.

    Remonti, L., Balestrieri, A. & Prigioni, C. Altitudinal gradient of otter (Lutra lutra) food niche in Mediterranean habitats. Can. J. Zool. 87, 285–291 (2009).

    Google Scholar 

  • 20.

    Sánchez-Hernández, J. & Amundsen, P.-A. Trophic ecology of brown trout in subarctic lakes. Ecol. Freshw. Fish. 24, 148–161 (2015).

    Google Scholar 

  • 21.

    Lobón-Cerviá, J. & Sanz, N. Brown Trout: Biology, Ecology and Management (Wiley, Hoboken, 2017).

    Google Scholar 

  • 22.

    Butler, J. R. A., Radford, A., Riddington, G. & Laughton, R. Evaluating an ecosystem service provided by Atlantic salmon, sea trout and other fish species in the River Spey, Scotland: The economic impact of recreational rod fisheries. Fish. Res. 96, 259–266 (2009).

    Google Scholar 

  • 23.

    Elliott, J. M. The food of brown trout (Salmo trutta) in a Dartmor stream. J. Appl. Ecol. 4, 59–71 (1967).

    Google Scholar 

  • 24.

    Sánchez-Hernández, J., Finstad, A. G., Arnekleiv, J. V., Kjærstad, G. & Amundsen, P.-A. Drivers of diet patterns in a globally distributed freshwater fish species. Can. J. Fish. Aquat. Sci. 76, 1263–1274 (2019).

    Google Scholar 

  • 25.

    Bhatt, J. P., Manish, K. & Pandit, M. K. Elevational gradients in fish diversity in the Himalaya: Water discharge is the key driver of distribution patterns. PLoS ONE 7, e46237 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Narayanaswamy, B. E. et al. Synthesis of knowledge on marine biodiversity in European seas: From census to sustainable management. PLoS ONE 8, e58909 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Arechavala-Lopez, P., Berg, M., Uglem, I., Bjørn, P. A. & Finstad, B. Variations in coastal fish species composition captured by traps in Romsdalsfjord, Western Norway. Int. Aquat. Res. 8, 109–119 (2016).

    Google Scholar 

  • 28.

    Mustamäki, N., Cederberg, J. & Matilla, J. Diet, stable isotopes and morphology of Eurasian perch (Perca fluviatilis) in littoral and pelagic habitats in the northern Baltic Proper. Environ. Biol. Fish. 97, 675–689 (2014).

    Google Scholar 

  • 29.

    Pereira, L. S., Agostinho, A. A. & Winemiller, K. O. Revisiting cannibalism in fishes. Rev. Fish. Biol. Fish. 27, 499–513 (2017).

    Google Scholar 

  • 30.

    German, D. P. & Horn, M. H. Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): Ontogenetic, dietary, and phylogenetic effects. Mar. Biol 148, 1123–1134 (2006).

    Google Scholar 

  • 31.

    Sánchez-Hernández, J. & Amundsen, P.-A. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19, 1003–1015 (2018).

    Google Scholar 

  • 32.

    Sánchez-Hernández, J. Taxonomy-based differences in feeding guilds of fish. Curr. Zool. 66, 51–56 (2020).

    PubMed  Google Scholar 

  • 33.

    Persson, L. et al. Culling prey promotes predator recovery-alternative states in a whole-lake experiment. Science 316, 1743–1745 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    Horká, P. et al. Feeding habits of the alien brook trout Salvelinus fontinalis and the native brown trout Salmo trutta in Czech mountain streams. Knowl. Manag. Aquat. Ecosyst. 418, 1–11 (2017).

    Google Scholar 

  • 35.

    Wetzel, R. G. Limnology: Lake and River Ecosystems 3rd edn. (Elsevier Academic Press, Amsterdam, 2001).

    Google Scholar 

  • 36.

    L’Abée-Lund, J. H., Langeland, A. & Sægrov, H. Piscivory by brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) in Norwegian lakes. J. Fish. Biol. 41, 91–101 (1992).

    Google Scholar 

  • 37.

    Vik, J., Borgstrom, R. & Skaala, O. Cannibalism governing mortality of juvenile brown trout, Salmo trutta, in a regulated stream. Regul. Rivers Res. Manag. 17, 583–594 (2001).

    Google Scholar 

  • 38.

    Montori, A., Tierno de Figueroa, J. M. & Santos, X. The diet of the brown trout Salmo trutta (L.) during the reproductive period: Size-related and sexual effects. Int. Rev. Hydrobiol. 91, 438–450 (2006).

    Google Scholar 

  • 39.

    García-Berthou, E. Ontogenetic diet shifts and interrupted piscivory in introduced largemouth bass (Micropterus salmoides). Int. Rev. Hydrobiol. 87, 353–363 (2002).

    Google Scholar 

  • 40.

    Sánchez-Hernández, J., Vieira-Lanero, R., Servia, M. J. & Cobo, F. Feeding habits of four sympatric fish species in the Iberian Peninsula: Keys to understanding coexistence using prey traits. Hydrobiologia 667, 119–132 (2011).

    Google Scholar 

  • 41.

    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Gött Studien 3, 595–708 (1847).

    Google Scholar 

  • 42.

    Belk, M. C. & Houston, D. D. Bergmann’s rule in ectotherms: A test using freshwater fishes. Am. Nat. 160, 803–808 (2002).

    PubMed  Google Scholar 

  • 43.

    Millien, V. et al. Ecotypic variation in the context of global climate change: Revisiting the rules. Ecol. Lett. 9, 853–869 (2006).

    PubMed  Google Scholar 

  • 44.

    Parra, I., Almodóvar, A., Nicola, G. G. & Elvira, B. Latitudinal and altitudinal growth patterns of brown trout Salmo trutta at different spatial scales. J. Fish. Biol. 74, 2355–2373 (2009).

    CAS  PubMed  Google Scholar 

  • 45.

    Jonsson, B. et al. Longevity, body size, and growth in anadromous brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 48, 1838–1845 (1991).

    Google Scholar 

  • 46.

    Marsh, G. A. & Fairbridge R. W. Lentic and lotic ecosystems. In Environmental Geology. Encyclopedia of Earth Science. (Springer, Dordrecht, 1999).

  • 47.

    Davis, A. M., Unmack, P. J., Pusey, B. J., Johnson, J. B. & Pearson, R. G. Marine-freshwater transitions are associated with the evolution of dietary diversification in terapontid grunters (Teleostei: terapontidae). J. Evol. Biol. 25, 1163–1179 (2012).

    CAS  PubMed  Google Scholar 

  • 48.

    McHugh, P. A., McIntosh, A. R. & Jellyman, P. G. Dual influences of ecosystem size and disturbance on food chain length in streams. Ecol. Lett. 13, 881–890 (2010).

    PubMed  Google Scholar 

  • 49.

    Beauchamp, D. A. Spatial and temporal dynamics of piscivory: Implications for food web Stability and the transparency of Lake Washington. Lake Reserv. Manag. 9, 151–154 (1994).

    ADS  Google Scholar 

  • 50.

    Marczak, L. B. et al. Latitudinal variation in top-down and bottom-up control of a salt marsh food web. Ecology 92, 276–281 (2011).

    CAS  PubMed  Google Scholar 

  • 51.

    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: Ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Haddaway, N. R., Collins, A. M., Coughlin, D. & Kirk, S. The role of google scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 10, e0138237 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Cooper, H. M. Research Synthesis and Meta-analysis: A Step-by-Step Approach (Sage Publications, New York, 2009).

    Google Scholar 

  • 56.

    Amundsen, P.-A. & Sánchez-Hernández, J. Feeding studies take guts—critical review and recommendations of methods for stomach contents analysis in fish. J. Fish. Biol. 95, 1364–1373 (2019).

    PubMed  Google Scholar 

  • 57.

    Knudsen, R., Klemetsen, A. & Staldvik, F. Parasites as indicators of individual feeding specialization in Arctic charr during winter in northern Norway. J. Fish. Biol. 48, 1256–1265 (1996).

    Google Scholar 

  • 58.

    Budy, P. et al. Limitation and facilitation of one of the world’s most invasive fish: An intercontinental comparison. Ecology 94, 356–367 (2013).

    PubMed  Google Scholar 

  • 59.

    Kahilainen, K. & Lehtonen, H. Piscivory and prey selection of four predator species in a whitefish dominated subarctic lake. J. Fish. Biol. 63, 659–672 (2003).

    Google Scholar 

  • 60.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Google Scholar 

  • 61.

    Del Re, A. C. A practical tutorial on conducting meta-analysis in R. Quant. Methods Psychol. 11, 37–50 (2015).

    Google Scholar 

  • 62.

    Duval, S. J. & Tweedie, R. L. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).

    CAS  PubMed  MATH  Google Scholar 

  • 63.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 64.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 65.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).

    Google Scholar 

  • 66.

    Wood, S. N. Generalized Additive Models: An Introduction with R wnd. (CRC Press, Boca Raton, 2017).

    Google Scholar 

  • 67.

    Garvey, J. E., Marschall, E. A. & Wright, R. A. Detecting relationships in continuous bivariate data. Ecology 79, 442–447 (1998).

    Google Scholar 

  • 68.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach 2nd edn. (Springer, New York, 2002).

    Google Scholar 

  • 69.

    Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.6 (2016).


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture