in

Ecological drivers of global gradients in avian dispersal inferred from wing morphology

  • 1.

    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).

    • Article
    • Google Scholar
  • 2.

    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).

  • 3.

    Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).

  • 4.

    Mayr, E. Animal Species And Evolution. (Belknap Press, 1963).

  • 5.

    Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).

  • 6.

    Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).

  • 7.

    Gaston, K. J. The Structure and Dynamics of Geographic Ranges. (Oxford University Press, 2003).

  • 8.

    Fritz, S. A., Jonsson, K. A., Fjeldsa, J. & Rahbek, C. Diversification and biogeographic patterns in four island radiations of passerine birds. Evolution 66, 179–190 (2012).

  • 9.

    Pigot, A. L. & Tobias, J. A. Dispersal and the transition to sympatry in vertebrates. Proc. R. Soc. B 282, 20141929 (2015).

  • 10.

    Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018).

  • 11.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography. (Princeton University Press, 1967).

  • 12.

    Ashby, B., Shaw, A. K. & Kokko, H. An inordinate fondness for species with intermediate dispersal abilities. Oikos 129, 311–319 (2020).

    • Article
    • Google Scholar
  • 13.

    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).

  • 14.

    Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–U257 (2008).

  • 15.

    Viana Duarte, S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. B 283, 20152406 (2016).

  • 16.

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

  • 17.

    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).

    • Article
    • Google Scholar
  • 18.

    Bregman, T. P., Sekercioglu, C. H. & Tobias, J. A. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. Biol. Conserv. 169, 372–383 (2014).

    • Article
    • Google Scholar
  • 19.

    Lees, A. C. & Peres, C. A. Gap-crossing movements predict species occupancy in Amazonian forest fragments. Oikos 118, 280–290 (2009).

    • Article
    • Google Scholar
  • 20.

    Dieckmann, U. et al. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).

    • Article
    • Google Scholar
  • 21.

    Salisbury, C. L., Seddon, N., Cooney, C. R. & Tobias, J. A. The latitudinal gradient in dispersal constraints: Ecological specialisation drives diversification in tropical birds. Ecol. Lett. 15, 847–855 (2012).

  • 22.

    Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).

    • Article
    • Google Scholar
  • 23.

    Peach, W. J., Hanmer, D. B. & Oatley, T. B. Do southern African songbirds live longer than their European counterparts? Oikos 93, 235–249 (2001).

    • Article
    • Google Scholar
  • 24.

    Forero, M. G., Donazar, J. A., Blas, J. & Hiraldo, F. Causes and consequences of territory change and breeding dispersal distance in the black kite. Ecology 80, 1298–1310 (1999).

    • Article
    • Google Scholar
  • 25.

    Dawideit, B. A., Phillimore, A. B., Laube, I., Leisler, B. & Bohning-Gaese, K. Ecomorphological predictors of natal dispersal distances in birds. J. Anim. Ecol. 78, 388–395 (2009).

  • 26.

    Alzate, A., Plas, F. V. D., Zapata, F. A., Bonte, D. & Etienne, R. S. Incomplete datasets obscure associations between traits affecting dispersal ability and geographic range size of reef fishes in the Tropical Eastern Pacific. Ecol. Evol. 9, 1567–1577 (2019).

  • 27.

    Tucker, M. A. et al. Moving in the Anthropocene: global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

  • 28.

    Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian wingtip shape reconsidered: Wingtip shape indices and morphological adaptations to migration. J. Avian Biol. 29, 273–292 (1998).

    • Article
    • Google Scholar
  • 29.

    Kipp, F. A. Der Handflügel-Index als flugbiologisches MaB. Die Vogelwarte 20, 77086 (1959).

    • Google Scholar
  • 30.

    Weeks, B. C. & Claramunt, S. Dispersal has inhibited avian diversification in Australasian archipelagoes. Proc. R. Soc. B 281, 20141257 (2014).

  • 31.

    Stoddard, M. C. et al. Avian egg shape: form, function, and evolution. Science 356, 1249–1254 (2017).

  • 32.

    Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in Neotropical birds. Am. Nat. 174, 358–368 (2009).

  • 33.

    Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B 283, 20161922 (2016).

  • 34.

    Chua, V. L. et al. Evolutionary and ecological forces influencing population diversification in Bornean montane passerines. Mol. Phylogenet. Evol. 113, 139–149 (2017).

  • 35.

    Claramunt, S., Derryberry, E. P., Remsen, J. V. & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. R. Soc. B 279, 1567–1574 (2012).

  • 36.

    White, A. E. Geographical barriers and dispersal propensity interact to limit range expansions of Himalayan birds. Am. Nat. 188, 99–112 (2016).

  • 37.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 38.

    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    • Article
    • Google Scholar
  • 39.

    Tobias, J. A. et al. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74 (2016).

    • Article
    • Google Scholar
  • 40.

    Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).

    • Article
    • Google Scholar
  • 41.

    Claramunt, S. & Wright, N. A. In The Extended Specimen: Emerging Frontiers in Collections-Based Ornithological Research (ed Michael S. Webster) 127–141 (CRC Press, 2017).

  • 42.

    Sutherland, G., Harestad, A., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4, 16 (2000).

    • Article
    • Google Scholar
  • 43.

    Whitmee, S. & Orme, C. D. L. Predicting dispersal distance in mammals: a trait-based approach. J. Anim. Ecol. 82, 211–221 (2013).

  • 44.

    Hosner, P. A., Tobias, J. A., Braun, E. L. & Kimball, R. T. How do seemingly non-vagile clades accomplish trans-marine dispersal? Trait and dispersal evolution in the landfowl (Aves: Galliformes). Proc. R. Soc. B 284, 20170210 (2017).

  • 45.

    Cardillo, M., Orme, C. D. L. & Owens, I. P. F. Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86, 2278–2287 (2005).

    • Article
    • Google Scholar
  • 46.

    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

  • 47.

    Tomašových, A. et al. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems. Proc. R. Soc. B 283, 20153027 (2016).

  • 48.

    Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: Geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).

    • Article
    • Google Scholar
  • 49.

    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).

  • 50.

    Sekar, S. A meta‐analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J. Anim. Ecol. 81, 174–184 (2012).

  • 51.

    Baliga, V. B., Szabo, I. & Altshuler, D. L. Range of motion in the avian wing is strongly associated with flight behavior and body mass. Sci. Adv. 5, eaaw6670 (2019).

  • 52.

    Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).

  • 53.

    Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).

    • Article
    • Google Scholar
  • 54.

    Jocque, M., Field, R., Brendonck, L. & Meester, L. D. Climatic control of dispersal–ecological specialization trade-offs: A metacommunity process at the heart of the latitudinal diversity gradient? Glob. Ecol. Biogeogr. 19, 244–252 (2010).

    • Article
    • Google Scholar
  • 55.

    Warrick, D. R. The turning- and linear-maneuvering performance of birds: the cost of efficiency for coursing insectivores. Can. J. Zool. 76, 1063–1079 (1998).

    • Article
    • Google Scholar
  • 56.

    Waters, J. M., Emerson, B. C., Arribas, P. & McCulloch, G. A. Dispersal reduction: causes, genomic mechanisms, and evolutionary consequences. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.01.012 (2020).

  • 57.

    Diamond, J. M., Gilpin, M. E. & Mayr, E. Species-distance relation for birds of the Solomon Archipelago, and the paradox of the great speciators. Proc. Natl Acad. Sci. USA 73, 2160–2164 (1976).

  • 58.

    Cadena, C. D. et al. Systematics, biogeography and diversification of Scytalopus tapaculos (Rhinocryptidae), an enigmatic radiation of Neotropical montane birds. Auk https://doi.org/10.1093/auk/ukz077 (2020).

  • 59.

    Luo, B. et al. Wing morphology predicts geographic range size in vespertilionid bats. Sci. Rep. 9, 1–6 (2019).

  • 60.

    Martin, P. R., Montgomerie, R. & Lougheed, S. C. Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution 64, 336–347 (2010).

  • 61.

    Habel, J. C., Tobias, J. A. & Fischer, C. Movement ecology of Afrotropical birds: functional traits provide complementary insights to species identity. Biotropica 51, 894–902 (2019).

  • 62.

    Sukumaran, J. & Knowles, L. L. Trait-dependent biogeography: (re)integrating biology into probabilistic historical biogeographical models. Trends Ecol. Evol. 33, 390–398 (2018).

  • 63.

    Howard, C. et al. Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proc. R. Soc. B 285, 20172329 (2018).

  • 64.

    Baldwin, M. W., Winkler, H., Organ, C. L. & Helm, B. Wing pointedness associated with migratory distance in common-garden and comparative studies of stonechats (Saxicola torquata). J. Evol. Biol. 23, 1050–1063 (2010).

  • 65.

    McEntee, J. P., Tobias, J. A., Sheard, C. & Burleigh, J. G. Tempo and timing of ecological trait divergence in bird speciation. Nat. Ecol. Evol. 2, 1120–1127 (2018).

  • 66.

    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).

  • 67.

    Knox, A. Post‐mortem changes in wing‐lengths and wing‐formulae. Ringing Migr. 3, 29–31 (1980).

    • Article
    • Google Scholar
  • 68.

    BirdLifeInternational. IUCN Red List for Birds, http://www.birdlife.org (2018).

  • 69.

    Eyres, A., Böhning‐Gaese, K. & Fritz, S. A. Quantification of climatic niches in birds: adding the temporal dimension. J. Avian Biol. 48, 1517–1531 (2017).

    • Article
    • Google Scholar
  • 70.

    Dunning, J. B. CRC Handbook of Avian Body Masses. 2nd edn (CRC Press, 2007).

  • 71.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    • Article
    • Google Scholar
  • 72.

    Pebesma, E. Simple features for R: standardized support for spatial vector data. R. J. 10, 439–446 (2018).

    • Article
    • Google Scholar
  • 73.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 74.

    O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders