in

Ecological interactions are a primary driver of population dynamics in wine yeast microbiota during fermentation

  • 1.

    Jolly, N. P., Augustyn, O. P. H. & Pretorius, I. S. The occurrence of non-Saccharomyces cerevisiae yeast species over three vintages in four vineyards and grape musts from four production regions of the Western Cape, South Africa. S. Afr. J. Enol. Vitic. 24, 63–69, https://doi.org/10.21548/24-2-2640 (2003).

  • 2.

    Ghosh, S., Bagheri, B., Morgan, H. H., Divol, B. & Setati, M. E. Assessment of wine microbial diversity using ARISA and cultivation-based methods. Ann. Microbiol. 65, 1833–1840, https://doi.org/10.1007/s13213-014-1021-x (2015).

  • 3.

    Bagheri, B., Bauer, F. F. & Setati, M. E. The diversity and dynamics of indigenous yeast communities in grape must from vineyards employing different agronomic practices and their influence on wine fermentation. S. Afr. J. Enol. Vitic. 36, 243–251, https://doi.org/10.21548/36-2-957 (2015).

  • 4.

    Wang, C., Esteve-Zarzoso, B., Cocolin, L., Mas, A. & Rantsiou, K. Viable and culturable populations of Saccharomyces cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris (synonym Candida zemplinina) during Barbera must fermentation. Food Res. Int. 78, 195–200, https://doi.org/10.1016/j.foodres.2015.10.0 (2015).

  • 5.

    González-Royo, E. et al. Oenological consequences of sequential inoculation with non-Saccharomyces yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in base wine for sparkling wine production. Eur. Food Res. Technol. 240, 999–1012, https://doi.org/10.1007/s00217-014-2404-8 (2015).

  • 6.

    Lleixà, J. et al. Analysis of the NCR mechanisms in Hanseniaspora vineae and Saccharomyces cerevisiae during winemaking. Front. Genet. 9, 747, https://doi.org/10.3389/fgene.2018.00747 (2019).

  • 7.

    Mane, S. S., Ghormade, V., Tupe, S. G. & Deshpande, M. V. Diversity of natural yeast flora of grapes and its significance in wine making. [Satyanarayana, T. & Kunze, G. (eds)] Yeast diversity in human welfare. 1–27, https://doi.org/10.1007/978-981-10-2621-81 (Springer, Singapore, 2017).

  • 8.

    Bagheri, B., Bauer, F. F. & Setati, M. E. The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations. Front. Microbiol. 8, 1988, https://doi.org/10.3389/fmicb.2017.01988 (2017).

  • 9.

    Çelik, Z. D., Erten, H., Darici, M. & Cabaroğlu, T. Molecular characterization and technological properties of wine yeasts isolated during spontaneous fermentation of Vitis vinifera L.cv. Narince grape juice grown in ancient wine making area Tokat, Anatolia. BIO Web Conf. 9, 02017, https://doi.org/10.1051/bioconf/20170902017 (2017).

    • Article
    • Google Scholar
  • 10.

    Shekhawat, K., Patterton, H., Bauer, F. F. & Setati, M. E. RNA-seq based transcriptional analysis of Saccharomyces cerevisiae and Lachancea thermotolerans in mixed-culture fermentations under anaerobic conditions. BMC Genomics 20, 145, https://doi.org/10.1186/s12864-019-5511-x (2019).

  • 11.

    Ciani, M., Comitini, F., Mannazzu, I. & Domizio, P. Controlled mixed culture fermentation: A new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res. 10, 123–133, https://doi.org/10.1111/j.1567-1364.2009.00579.x (2010).

  • 12.

    Gobbi, M. et al. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of the wine. Food Microbiol. 33, 271–81, https://doi.org/10.1016/j.fm.2012.10.004 (2013).

  • 13.

    Bagheri, B., Zambelli, P., Vigentini, I., Bauer, F. F. & Setati, M. E. Investigating the effect of selected non-Saccharomyces species on wine ecosystem function and major volatiles. Front. Bioeng. Biotechnol. 6, 169, https://doi.org/10.3389/fbioe.2018.00169 (2018).

  • 14.

    Mills, D. A., Johannsen, E. A. & Cocolin, L. Yeast diversity and persistence in botrytis-affected wine fermentations. Appl. Environ. Microbiol. 68, 4884–4893, https://doi.org/10.1128/AEM.68.10.4884-4893.2002 (2002).

  • 15.

    Ciani, M. et al. Yeast interactions in inoculated wine fermentation. Front. Microbiol. 7, 555, https://doi.org/10.3389/fmicb.2016.00555 (2016).

  • 16.

    Rollero, S. et al. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl. Microbiol. Biotechnol. 99, 2291–2304, https://doi.org/10.1007/s00253-014-6210-9 (2015).

  • 17.

    Padilla, B., Gil, J. V. & Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 7, 411, https://doi.org/10.3389/fmicb.2016.00411 (2016).

  • 18.

    Pérez-Torrado, R. et al. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon. Sci. Rep. 7, 43603, https://doi.org/10.1038/srep43603 (2017).

  • 19.

    Edwards, C. G. & Oswald, T. A. Interactive effects between total SO2, ethanol and storage, temperature against Brettanomyces bruxellensis. Lett. Appl. Microbiol. 66, 71–76, https://doi.org/10.1111/lam.12816 (2017).

  • 20.

    Liu, Y. et al. Wine microbiome: A dynamic world of microbial interactions. Crit. Rev. Food Sci. Nutr. 57, 856–873, https://doi.org/10.1080/10408398.2014.983591 (2017).

  • 21.

    Torija, M. J., Rozès, N., Poblet, M., Guillamón, J. M. & Mas, A. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int. J. Food Microbiol. 80, 47–53, https://doi.org/10.1016/S0168-1605(02)00144-7 (2003).

  • 22.

    Reddy, L. V. A. & Reddy, O. V. S. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. FBP 89, 487–491, https://doi.org/10.1016/j.fbp.2010.11.007 (2011).

  • 23.

    García-Ríos, E., Gutiérrez, A., Salvadó, Z. Z., Arroyo-López, F. N. & Guillamon, J. M. The fitness advantage of commercial wine yeasts in relation to the nitrogen concentration, temperature, and ethanol content under microvinification conditions. Appl. Environ. Microbiol. 80, 704–713, https://doi.org/10.1128/AEM.03405-13 (2014).

  • 24.

    Bokulich, N. A., Swadener, M., Sakamoto, K., Mills, D. A. & Bisson, L. F. Sulfur dioxide treatment alters wine microbial diversity and fermentation progression in a dose-dependent fashion. Am. J. Enol. Vitic. 66, 73–79, https://doi.org/10.5344/ajev.2014.14096 (2015).

  • 25.

    Sun, Y., Zhang, T., Lu, H., Yu, Z. & Li, X. Effect of added sulfur dioxide levels on the fermentation characteristics of strawberry wine. J. Inst. Brew. 122, 446–451, https://doi.org/10.1002/jib.342 (2016).

  • 26.

    Maturano, Y. P. et al. Culture-dependent and independent techniques to monitor yeast species during cold soak carried out at different temperatures in winemaking. Int. J. Food Microbiol. 237, 142–149, https://doi.org/10.1016/j.ijfoodmicro.2016.08.013 (2016).

  • 27.

    Shekhawat, K., Bauer, F. F. & Setati, M. E. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 101, 2479–2491, https://doi.org/10.1007/s00253-016-8001-y (2016).

    • Article
    • Google Scholar
  • 28.

    Alonso-del-Real, J., Lairón-Peris, M., Barrio, E. & Querol, A. Effect of temperature on the prevalence of Saccharomyces non cerevisiae species against a S. cerevisiae wine strain in wine fermentation: Competition, physiological fitness, and influence in final wine composition. Front. Microbiol. 8, 150, https://doi.org/10.3389/fmicb.2017.00150 (2017).

  • 29.

    Gao, C. & Fleet, G. H. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata, and Kloeckera apiculata. J. Appl. Bacteriol. 65, 405–410, https://doi.org/10.1111/j.1365-2672.1988.tb01909.x (1988).

  • 30.

    Erten, H. Relations between elevated temperatures and fermentation behaviour of Kloeckera apiculata and Saccharomyces cerevisiae associated with winemaking in mixed cultures. World J. Microbiol. Biotechnol. 18, 373–378, https://doi.org/10.1023/A:1015221406411 (2002).

  • 31.

    Mendoza, M., de Nadra, M. C., Bru, E. & Farías, M. E. Influence of wine-related physicochemical factors on the growth and metabolism of non-Saccharomyces and Saccharomyces yeasts in mixed culture. J. Ind. Microbiol. Biotechnol. 36, 229–237, https://doi.org/10.1007/s10295-008-0489-4 (2009).

  • 32.

    Bartowsky, E. J. Bacterial spoilage of wine and approaches to minimize it. Lett. Appl. Microbiol. 48, 149–56, https://doi.org/10.1111/j.1472-765X.2008.02505.x (2009).

  • 33.

    Salvadó, Z., Arroyo-López, F. N., Barrio, E., Querol, A. & Guillamón, J. M. Quantifying the individual effects of ethanol and temperature on the fitness advantage of Saccharomyces cerevisiae. Food Microbiol. 28, 1155–1161, https://doi.org/10.1016/j.fm.2011.03.008 (2011).

  • 34.

    Cocolin, L. & Mills, D. A. Wine yeast inhibition by sulfur dioxide: A comparison of culture-dependent and independent methods. Am. J. Enol. Vitic. 54, 125–130 (2003).

    • CAS
    • Google Scholar
  • 35.

    Albertin, W. et al. Oenological pre-fermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must. Int. J. Food Microbiol. 178, 87–97, https://doi.org/10.1016/j.ijfoodmicro.2014.03.009 (2014).

  • 36.

    Chandra, M., Oro, I., Ferreira-Dias, S. & Malfeito-Ferreira, M. Effect of ethanol, sulfur dioxide and glucose on the growth of wine spoilage yeasts using response surface methodology. PLOS One 10(6), e0128702, https://doi.org/10.1371/journal.pone.0128702 (2015).

  • 37.

    Rossouw, D., Bagheri, B., Setati, M. E. & Bauer, F. F. Co-Flocculation of yeast species, a new mechanism to govern population dynamics in microbial ecosystems. PLOS One 10(8), e0136249, https://doi.org/10.1371/journal.pone.0136249 (2015).

  • 38.

    Rossouw, D., Meiring, S. P. & Bauer, F. F. Modifying Saccharomyces cerevisiae adhesion properties regulates yeast ecosystem dynamics. mSphere 3, e00383–18, https://doi.org/10.1128/mSphere.00383-18 (2018).

  • 39.

    Henschke, P. A. & Jiranek, V. Yeasts metabolism of nitrogen compounds. [Fleet, G. H. (ed.)] Wine Microbiology and Biotechnology. 77–164 (Harwood Academic: Chur, Switzerland, 1993).

  • 40.

    Bely, M., Sablayrolles, J. M. & Barre, P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J. Ferment. Bioeng. 70, 246–252, https://doi.org/10.1016/0922-338X(90)90057-4 (1990).

  • 41.

    Siret, R., Gigaud, O., Rosec, P. J. & This, P. Analysis of grape Vitis vinifera L. DNA in must mixtures and experimental mixed wines using microsatellite markers. Agric. Food. Chem. 50, 3822–3827, https://doi.org/10.1021/jf011462e (2002).

  • 42.

    García-Beneytez, E., Moreno-Arribas, M. V., Borrego, J., Polo, M. C. & Ibáñez, J. Application of a DNA analysis method for the cultivar identification of grape musts and experimental and commercial wines of Vitis vinifera L. using microsatellite markers. J. Agric. Food Chem. 50, 6090–6096, https://doi.org/10.1021/jf0202077 (2002).

  • 43.

    Savazzini, F. & Martinelli, L. DNA analysis in wines: Development of methods for enhanced extraction and real-time polymerase chain reaction quantification. Anal. Chim. Acta 563, 274–282, https://doi.org/10.1016/j.aca.2005.10.078 (2006).

  • 44.

    Sambrook, J. & Russell, W. D. Rapid isolation of yeast DNA. Cold Spring Harbour Protocols 2018:pdb.prot093542, https://doi.org/10.1101/pdb.prot4039 (2006).

    • Article
    • Google Scholar
  • 45.

    Briciu, D. et al. Development of methods for DNA extraction from leaves and must grapes. Bulletin UASVM. Anim. Sci. Biotechnol. 67, 1843–1849, https://doi.org/10.15835/buasvmcn-asb:67:1-2:5369 (2010).

    • Article
    • Google Scholar
  • 46.

    Işçi, B., Yildirim Kalkan, H. & Altindisli, A. Evaluation of methods for DNA extraction from must and wine. J. Inst. Brew. 120, 238–243, https://doi.org/10.1002/jib.129 (2014).

  • 47.

    Louw, L. et al. Fermentation-derived aroma compounds in varietal young wines from South Africa. S. Afr. J. Enol. Vitic. 31, 213–225, https://doi.org/10.21548/31-2-1418 (2010).

  • 48.

    Charoenchai, C., Fleet, G. H. & Henschke, P. A. Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeasts. Am. J. Enol. Vitic. 49, 283–288, https://doi.org/10.1016/j.ijfoodmicro.2009.01.035 (1998).

  • 49.

    Arroyo-Lopez, F. N., Orlic, S., Querol, A. & Barrio, E. Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int. J. Food Microbiol. 131, 120–127, https://doi.org/10.1016/j.ijfoodmicro.2009.01.035 (2009).

  • 50.

    Heard, G. M. & Fleet, G. H. The effects of temperature and pH on the growth of yeast species during the fermentation of grape juice. J. Appl. Microbiol. 65, 23–28, https://doi.org/10.1111/j.1365-2672.1988.tb04312.x (1988).

    • Article
    • Google Scholar
  • 51.

    Alexandre, H., Long, T. N., Feuillat, M. & Charpentier, C. Contribution à l′étude des bourbes: influence sur a fermentiscibilité des moûts. Rev. Fr. Enol. 146, 11–19 (1994).

    • CAS
    • Google Scholar
  • 52.

    Pina, C., Couto, J. A., António, J. & Hogg, T. Inferring ethanol tolerance of Saccharomyces and non-Saccharomyces yeasts by progressive inactivation. Biotechnol. Lett. 26, 1521–7, https://doi.org/10.1023/B:BILE.0000044456.72347.9f (2004).

  • 53.

    Arroyo-Lopez, F. N. et al. Susceptibility and resistance to ethanol on Saccharomyces strains isolated from wild and fermentative environments. Yeast 27, 1005–1015, https://doi.org/10.1002/yea.1809 (2010).

  • 54.

    Redón, M., Guillamón, J. M., Mas, A. & cRozès, N. Effect of growth temperature on yeast lipid composition and alcoholic fermentation at low temperature. Eur. Food Res. Technol. 232, 517–527, https://doi.org/10.1007/s00217-010-1415-3 (2011).

  • 55.

    Ferrer-Gallego, R. et al. Microbiological, physical, and chemical procedures to elaborate high-quality SO2-free wines. [Jordão, A. M. & Cosme, F. (eds)] Grapes and Wines – Advances in Production, Processing, Analysis and Valorization. 171–193, https://doi.org/10.5772/68059 (Intech Open, open access, 2017).

    • Google Scholar
  • 56.

    Howe, P., Worobo, R. & Sacks, G. L. Conventional measurements of sulfur dioxide (SO2) in red wine overestimate SO2 antimicrobial activity. Am. J. Enol. Vitic. 69, 210–220, https://doi.org/10.5344/ajev.2018.17037 (2018).

    • Article
    • Google Scholar
  • 57.

    Jolly, N. P., Augustyn, O. P. H. & Pretorius, I. S. The use of Candida pulcherrima in combination with Saccharomyces cerevisiae for the production of Chenin blanc wine. S. Afr. J. Enol. Vitic. 24, 63–69, https://doi.org/10.21548/24-2-2641 (2003).

  • 58.

    Morgan, S. C., Scholl, C. M., Benson, N. L., Stone, M. L. & Durall, D. M. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries. Int. J. Food Microbiol. 244, 96–102, https://doi.org/10.1016/j.ijfoodmicro.2016.12.025 (2017).

  • 59.

    Casalone, E. et al. Mechanism of resistance to sulfite in Saccharomyces cerevisiae. Curr. Genet. 22, 435–440, https://doi.org/10.1007/bf00326407 (1992).

  • 60.

    Park, H. & Bakalinsky, A. T. SSU1 mediates sulphite efflux in Saccharomyces cerevisiae. Yeast 16, 881–888, 10.1002/1097-0061(200007)16:10<881::AID-YEA576>3.0.CO;2-3 (2000).

  • 61.

    Divol, B., du Toit, M. & Duckitt, E. Surviving in the presence of sulfur dioxide: strategies developed by wine yeasts. Appl. Microbiol. Biotechnol. 95, 601–613, https://doi.org/10.1007/s00253-012-4186-x (2012).

  • 62.

    Remize, F., Andriru, E. & Dequin, S. Engineering of the pyruvate dehydrogenase by pass in Saccharomyces cerevisiae: role of the cytosolic Mg(2+) and mitochondrial K(+) acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl. Environ. Microbiol. 66, 3151–3159, https://doi.org/10.1128/AEM.66.8.3151-3159.2000 (2000).


  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste